como resolver
3㏒3 27 ?
Soluções para a tarefa
Respondido por
0
Resolução da questão, veja:
Neste tipo de logaritmo devemos usar a seguinte propriedade: n • log (a) = log (a^n), veja:

Espero que te ajude '-'
Neste tipo de logaritmo devemos usar a seguinte propriedade: n • log (a) = log (a^n), veja:
Espero que te ajude '-'
Perguntas interessantes
Geografia,
11 meses atrás
Matemática,
11 meses atrás
Física,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Biologia,
1 ano atrás
Saúde,
1 ano atrás