Matemática, perguntado por suelledeoliveir, 1 ano atrás

COMO REDUZIR OS TERMOS

Anexos:

Soluções para a tarefa

Respondido por Usuário anônimo
1
Bom dia Suelle!

Solução!
e)\\\\
10x^{2}y-5xy^{2}+\dfrac{1x^{2}y}{3}+\dfrac{4xy^{2}}{9}\\\\\\ \dfrac{90x^{2}y-45xy^{2}+3x^{2}y+4xy^{2}}{9}\\\\\\ \dfrac{90x^{2}y+3x^{2y}}{9}+\dfrac{-45xy^{2}+4xy^{2}}{9}\\\\\\ \dfrac{93x^{2}y}{9}-\dfrac{41xy^{2}}{9}\\\\\\ \dfrac{31x^{2}y}{3}-\dfrac{41xy^{2}}{9}$\\\\\\\\\\\

f)~~\left( \dfrac{1x^{-4}}{3}\right) +\left( \dfrac{2x^{-6}}{3}\right) -\left( \dfrac{3x^{-2}}{2}\right) ^{3} +\left( \dfrac{1x^{-2}}{2}\right)^{2} \\\\\\\\
\left( \dfrac{1}{3x^{4}}\right) +\left( \dfrac{2}{3x^{6}}\right) -\left( \dfrac{3}{2x^{2}}\right) ^{3} +\left( \dfrac{1}{2x^{2}}\right)^{2}\\\\\\\\\\
\left( \dfrac{1}{3x^{4}}\right) +\left( \dfrac{2}{3x^{6}}\right) -\left( \dfrac{27}{8x^{6}}\right) +\left( \dfrac{1}{4x^{4}}\right)\\\\\\\

\dfrac{1}{3x^{4}} + \dfrac{2}{3x^{6}} -\dfrac{27}{8x^{6}} + \dfrac{1}{4x^{4}}\\\\\\\\\
 
\dfrac{2}{3x^{6}} -\dfrac{27}{8x^{6}}+\dfrac{1}{3x^{4}}+ \dfrac{1}{4x^{4}}\\\\\\\\
\dfrac{16-81}{24x^{6}}+\dfrac{4+3}{12x^{4}}\\\\\\\\\
-\dfrac{65}{24x^{6}}+\dfrac{7}{12x^{4}}$

g)~~\dfrac{2x^{2}}{3}\times\dfrac{1x^{4}}{2}-\left( \dfrac{x}{2} \times x^{2} \right) ^{2}\\\\\\
\dfrac{2x^{6}}{6}\left( \dfrac{1x^{3}}{2}\right) ^{2}\\\\\\
\dfrac{2x^{6}}{6}-\dfrac{1x^{6}}{4}\\\\\
\dfrac{4x^{6} -3x^{6}}{12}\\\\\\
\dfrac{x^{6}}{12}$


h)~~\left( \dfrac{1x^{2}}{2}\right)^{3} \times \dfrac{1x^{3}}{3} -\dfrac{2x^{4}}{3}.\dfrac{1x^{5}}{3}+\left[\left( \dfrac{1x^{2}}{2}\right)^{2}\right] ^{2}\times x\\\\\\\
\dfrac{x^{6}}{8}\times\dfrac{x^{3}}{3}-\dfrac{2x^{9}}{9}+\dfrac{x^{9}}{16}\\\\\\\
\dfrac{x^{9}}{24}-\dfrac{2x^{9}}{9}+\dfrac{x^{9}}{16}\\\\\\\
\dfrac{6x^{9}-32x^{9}+9x^{9}}{144}\\\\\\\
\dfrac{15x^{9}-32x^{9} }{144}\\\\\\
\dfrac{-17x^{9}}{144}


i)\\\ \left(\dfrac{4x^{4}}{9}:\dfrac{2x}{3}\right)^{3} +\dfrac{1x^{9}}{2} -\left( \dfrac{1x^{3}}{2}\right) ^{4}:\dfrac{1x^{3}}{3}\\\\\\
\dfrac{8x^{9}}{27}+\dfrac{1x^{9}}{2}-\dfrac{3x^{9}}{16}\\\\\\\
\dfrac{128x^{9}+216x^{9} -81x^{9}}{432}\\\\\\\
\dfrac{263x^{9}}{432}$

Bom dia!
Bons estudos!





Perguntas interessantes