Física, perguntado por jeduardoccarvalho, 7 meses atrás

Como podemos observar na figura, dois móveis, A e B, começam a se movimentar ao mesmo tempo, em uma trajetória retilínea, com velocidades constantes. Como é fácil perceber, o móvel A, depois de um certo tempo, ultrapassa o móvel B, em um ponto determinado.



a) Escreva as equações horárias de cada móvel.




b) Determine o tempo de encontro.






c) Calcule a posição de encontro.


URGENTE

Anexos:

Soluções para a tarefa

Respondido por Kin07
1

Resposta:

Solução:

Velocidades constantes:

Movimento uniforme ( MU ).

Função horária do espaço.

\boxed{  \sf \displaystyle S = S_0 + v \cdot t   }

Onde:

S =  espaço final;

So = espaço inicial;

V = velocidade média;

t =  intervalo de tempo.

a) Escreva as equações horárias de cada móvel.

\sf \displaystyle S_A = 40 + 80\cdot t

\sf \displaystyle S_B = 80 + 40\cdot t

b) Determine o tempo de encontro.

Para determinar o tempo de encontro temos que fazer:

\sf \displaystyle S_A = S_B

\sf \displaystyle  40 +80\cdot t = 80+40 \cdot t

\sf \displaystyle 80\cdot t - 40 \cdot t = 80 - 40

\sf \displaystyle 40 \cdot t = 40

\sf \displaystyle  t = \dfrac{40}{40}

\sf \displaystyle t = 1 \:h

c) Calcule a posição de encontro.

Para determinar a posição de encontro é só substituir o valor de t em quaisquer equação.

\sf \displaystyle S_E = 40 + 80\cdot t

\sf \displaystyle S_E = 40 + 80\cdot 1

\sf \displaystyle S_E = 40 + 80

\sf \displaystyle S_E = 120\:km

Explicação:

Perguntas interessantes