Matemática, perguntado por Kennia1415, 1 ano atrás

Como montar um sistema de equacao de 1° grau ?

Soluções para a tarefa

Respondido por flor142002
18
Para encontrarmos numa equação de 1º grau com duas incógnitas, por exemplo,
4x + 3y = 0, os valores de x e de y é preciso relacionar essa equação com outra ou outras com as mesmas incógnitas. Essa relação é chamada de sistema.

Um sistema de equação de 1º grau com duas incógnitas é formado por: duas equações de 1º grau com duas incógnitas diferentes em cada equação. Veja um exemplo:

Para encontramos o par ordenado solução desse sistema é preciso utilizar dois métodos para a sua solução.
Esses dois métodos são: Substituição e Adição.

* Método da substituição
Esse método consiste em escolher uma das duas equações, isolar uma das incógnitas e substituir na outra equação, veja como:

Dado o sistema, e numeramos as equações.


Escolhemos a equação 1 e isolamos o x:

x + y = 20
x = 20 – y

Agora na equação 2 substituímos o valor de x = 20 – y.

 3x   +   4 y   = 72
3 (20 – y) + 4y = 72 
 60-3y + 4y  = 72
 -3y + 4y   =   72 – 60
       y = 12

Descobrimos o valor de y, para descobrir o valor de x basta substituir 12 na equação
x = 20 – y.
x = 20 – y
x = 20 – 12
x = 8

Portanto, a solução do sistema é S = (8, 12)

- Espero ter ajudado *-*

Perguntas interessantes