como fazer uma equação de1 grau com duas nicogritas
Soluções para a tarefa
Respondido por
1
Considere a equação: 2x - 6 = 5 - 3y
Trata-se de uma equação com duas variáveis, x e y, pode ser transformada numa equação equivalente mais simples. Assim:
2x + 3y = 5 + 6
2x + 3y = 11 ==> Equação do 1º grau na forma ax + by = c .
Denominando equação de 1º grau com duas variáveis, x e y, a toda equação que pode ser reproduzida à forma ax + by = c, sendo a e b números diferentes de zero, simultaneamente.
Na equação ax + by = c, denominamos:
x + y - variáveis ou incógnita
a - coeficiente de x
b - coeficiente de y
c - termo independente
Exemplos:
x + y = 30
2x + 3y = 15
x - 4y = 10
-3x - 7y = -48
2x- 3y = 0
x - y = 8
Solução de uma equação de 1º grau com duas variáveis
Quais o valores de x e y que tornam a sentença x - 2y = 4 verdadeira?
Observe os pares abaixo:
x = 6, y = 1
x - 2y = 4
6 - 2 . 1 = 4
6 - 2 = 4
4 = 4 (V)
x = 8, y = 2
x - 2y = 4
8 - 2 . 2 = 4
8 - 4 = 4
4 = 4 (V)
x = -2, y = -3
x - 2y = 4
-2 - 2 . (-3) = 4
-2 + 6 = 4
4 = 4 (V)
Verificamos que todos esses pares são soluções da equação x - 2y = 4.
Assim, os pares (6, 1); (8, 2); (-2, -3) são algumas das soluções dessa equação.
Uma equações do 1º grau com duas variáveis tem infinitas soluções - infinitos (x, y) - , sendo, portanto, seu conjunto universo .
Podemos determinar essas soluções, atribuindo-se valores quaisquer para uma das variáveis, calculando a seguir o valor da outra. Exemplo:
Determine uma solução para a equação 3x - y = 8.
Atribuímos para o x o valor 1, e calculamos o valor de y. Assim:
3x - y = 8
3 . (1) - y = 8
3 - y = 8
-y = 5 ==> Multiplicamos por -1
y = -5
O par (1, -5) é uma das soluções dessa equação.
V = {(1, -5)}
Trata-se de uma equação com duas variáveis, x e y, pode ser transformada numa equação equivalente mais simples. Assim:
2x + 3y = 5 + 6
2x + 3y = 11 ==> Equação do 1º grau na forma ax + by = c .
Denominando equação de 1º grau com duas variáveis, x e y, a toda equação que pode ser reproduzida à forma ax + by = c, sendo a e b números diferentes de zero, simultaneamente.
Na equação ax + by = c, denominamos:
x + y - variáveis ou incógnita
a - coeficiente de x
b - coeficiente de y
c - termo independente
Exemplos:
x + y = 30
2x + 3y = 15
x - 4y = 10
-3x - 7y = -48
2x- 3y = 0
x - y = 8
Solução de uma equação de 1º grau com duas variáveis
Quais o valores de x e y que tornam a sentença x - 2y = 4 verdadeira?
Observe os pares abaixo:
x = 6, y = 1
x - 2y = 4
6 - 2 . 1 = 4
6 - 2 = 4
4 = 4 (V)
x = 8, y = 2
x - 2y = 4
8 - 2 . 2 = 4
8 - 4 = 4
4 = 4 (V)
x = -2, y = -3
x - 2y = 4
-2 - 2 . (-3) = 4
-2 + 6 = 4
4 = 4 (V)
Verificamos que todos esses pares são soluções da equação x - 2y = 4.
Assim, os pares (6, 1); (8, 2); (-2, -3) são algumas das soluções dessa equação.
Uma equações do 1º grau com duas variáveis tem infinitas soluções - infinitos (x, y) - , sendo, portanto, seu conjunto universo .
Podemos determinar essas soluções, atribuindo-se valores quaisquer para uma das variáveis, calculando a seguir o valor da outra. Exemplo:
Determine uma solução para a equação 3x - y = 8.
Atribuímos para o x o valor 1, e calculamos o valor de y. Assim:
3x - y = 8
3 . (1) - y = 8
3 - y = 8
-y = 5 ==> Multiplicamos por -1
y = -5
O par (1, -5) é uma das soluções dessa equação.
V = {(1, -5)}
nycolle29:
mas tem um jeito mas fácil de.fazer
Perguntas interessantes
Artes,
10 meses atrás
Geografia,
10 meses atrás
Matemática,
10 meses atrás
Matemática,
1 ano atrás
Química,
1 ano atrás
Química,
1 ano atrás