Como fazer equação do segundo grau?
Soluções para a tarefa
Três passos para resolver uma equação do segundo grau
Existem diversos modos de se resolver uma equação do segundo grau, contudo, nem sempre essas formas apresentam o melhor método de resolução. Dessa maneira, para agilizar a solução de exercícios de um modo geral, apresentaremos três passos que facilitarão bastante o processo!
Os três passos seguintes baseiam-se na fórmula de Bhaskara, que é o método resolutivo para equações do segundo grau mais popular entre os estudantes.
Primeiro passo: Escreva os valores numéricos dos coeficientes a, b e c.
Toda equação do segundo grau pode ser escrita na forma ax2 + bx + c = 0. Desse modo, o coeficiente a é o número que multiplica x2. O coeficiente b é o número que multiplica x e o coeficiente c é um número real. Portanto, dada uma equação do segundo grau, escreva os valores de a, b e c de forma clara, objetiva e evidente para que eventuais consultas a esses valores sejam feitas rapidamente.
Segundo passo: Calcule o valor de delta.
O valor de delta é dado pela seguinte expressão: Δ = b2 – 4ac, em que a, b e c são coeficientes da equação e Δ é delta.
Tomando o exemplo anterior, na equação 2x2 + 8x – 24 = 0, delta vale:
Δ = b2 – 4ac
Δ = 82 – 4·2·(– 24)
Δ = 64 + 192
Δ = 256
Terceiro passo: calcule os valores de x da equação.
Após calcular o valor de delta, os valores de x podem ser obtidos por meio da seguinte expressão:
x = – b ± √Δ
2·a
Observe que nessa expressão aparece o sinal ±. Isso indica que x possui dois valores: o primeiro para a √Δ (raiz de delta) negativa e o segundo para √Δ positiva.
Tomando o exemplo já citado, observe a conclusão do terceiro passo:
x = – b ± √Δ
2·a
x = – 8 ± √256
2·2
x = – 8 ± 16
4
Para √Δ negativa, teremos:
x' = – 8 – 16 = –24 = –6
4 4
Observações importantes:
Ao calcular o valor de Δ, o aluno depara-se com o jogo de sinais. É preciso ter extrema atenção ao termo “– 4ac”, pois, muitas vezes, c possui um valor negativo, o que torna esse termo positivo em virtude do jogo de sinais.
O mesmo ocorre ao encontrar os valores de x. Repare que existe um “– b” na fórmula. Se b for negativo, por causa do jogo de sinais, – b será positivo (+ b).
O valor de Δ pode ser utilizado como parâmetro para decidir como serão as raízes da equação. Uma equação em que Δ > 0 possui duas raízes reais distintas, uma equação em que Δ = 0 possui duas raízes reais iguais ou uma raiz real dupla, isto é, x' = x'', e uma equação em que Δ < 0 não possui raízes reais.
Para ajudar a decorar as fórmulas utilizadas, sempre as escreva em seu caderno para cada exercício que for resolvido, recitando-as em voz alta.
Exemplo:
Quais são as raízes da equação x2 – x – 30 = 0?
Passo 1: a = 1, b = – 1 e c = – 30.
Passo 2: cálculo do valor de delta
Δ = b2 – 4ac
Δ = (–1)2 – 4·1·(–30)
Δ = 1 + 120
Δ = 121
Passo 3: Calcule os valores de x:
x = – b ± √Δ
2·a
x = – (–1) ± √121
2·1
x = 1 ± 11
2
x' = 1 + 11 = 12 = 6
2 2
Logo, as raízes ou valores de x para essa equação são 6 e – 5.
x'' = 1 – 11 = – 10 = – 5
2 2
➡➡ Resposta ⬅ ⬅
➱ O que é uma equação?
Equação é uma conta matemática que envolve letras ou seja são chamadas incógnitas as mais usadas são X e Y. E possui muitos graus iremos ver a baixo a do segundo grau.
➱ O que é uma equação de segundo grau?
É uma equação que possui a incógnita (letra) com maior grau igual a 2.
➱ Como fazer uma resolução de equação normal:
➤ Para resolvermos equações devemos separar os números com incógnitas que estão na equação para o lado esquerdo do igual.
➤ E devemos passar os números sem incógnitas para o lado direito do igual.
➤ Quando os números estiver do lado errado do igual mudamos o sinal toda vez que mudar de lado.
➱ Como fazer resolução da equação de segundo grau:
Tem várias formas mas a mais conhecida e mais usada é a forma de Bhaskara, que é uma forma que descobre a equação pelos seus coeficientes. Mas podemos fazer por eliminação das letras também e usando um pouco das regrinhas abaixo.
Regrinhas:
➢ Números com incógnitas = lado esquerdo do igual .
➢ Números sem incógnitas = lado direito do igual .
➢ Mudando de lado = mude o sinal também.
➱ Como saber se há raízes reais:
Vendo se o número possui um sinal negativo ou positivo se o número não tiver sinal nenhum ele é considerado positivo.
===========================================================
➡➡ Exemplos ⬅⬅
➱ Equação normal:
3x+4 - 5= 8x-5
3x - 8x = -5 +5
-5x = 0
x= 0/-5
x= 0
----------------------------------------
➱ Equação na forma de Bhaskara:
-b ± √∆ × 1/2a
∆ = b² - 4ac
x² - 5x + 6
a = 3
b = -8
c = 4
∆ = (-8)² - 4 × 3 × 4
∆ = 64 - 48
∆ = 1
6
-(-5) ± √16 × 1/2
(5 ± 16)/2
x' = (5 + 16)/2
x' = 21/2
x' = 10.5
x" = (5-16)/2
x" = -11/2
x" = -55
S = (10.5,-55)
----------------------------------------
➱ Somando o produto:
Soma das raízes = -b/a
Produto das raízes = c/a
x² - 4x + 4
-(-4)/1 = 4
4/1 = 4
Pensa em dois números que somados sejam 8 e multiplicados sejam 16. Esses números são: 4 e 4.
S = (4,4)
===========================================================
➡➡ Explicação ⬅⬅
➱ Forma de Bhaskara:
Equação do segundo grau ➱ ax² + bx + y = 0 com a ≠ 0
Reescrevemos ➱ ax² + bx = -y
Dividindo por algum número no caso da explicação é com a letra a.
x² + bx/a = -y/a
Fazendo se tornar notável:
x² + 2bx/2a + b²/4a² = -y/a + b²/4a²
(x + b/2a)² = -4ay + b²/4a²
x + b/2a = ± √(-4ay + b²)/2a
x = -b ± √(b² - 4ay) × 1/2a
----------------------------------------
➱ Soma e Produto:
Equação do segundo grau ➱ ax² + bx + c = 0 com a ≠ 0
Raízes são dadas pela essa equação ➱ x = -b ± √(b² - 4ac) × 1/2a
Som as raízes para conseguirmos algum resultado para ficar perto do final da conta ➱
x' = x = -b + √(b² - 4ay) × 1/2a
x" = x = -b - √(b² - 4ay) × 1/2a
-b + √(b² - 4ay) - b - √(b² - 4ay)/2a
Resposta final: -b/a
----------------------------------------
Descobrindo produto:
x' = x = -b + √(b² - 4ay) × 1/2a
x" = x = -b - √(b² - 4ay) × 1/2a
(-b + √(b² - 4ay) )(-b - √(b² - 4ay) × (1/2a)²
(-b)² - ( √(b² - 4ay) )² × 1/4a²
b² - (b² - 4ay) × 1/4a²
b² - b² + 4ay × 1/4a²
4ay/4a²
y/a
--------------------------------------------------------------------------------
Estude mais equações:
1- brainly.com.br/tarefa/36203446
2- brainly.com.br/tarefa/36384234
Bons Estudos!!