Matemática, perguntado por Aluisio9, 1 ano atrás

Como fazer equação do segundo grau?

Soluções para a tarefa

Respondido por Eduh02
2

Três passos para resolver uma equação do segundo grau

Existem diversos modos de se resolver uma equação do segundo grau, contudo, nem sempre essas formas apresentam o melhor método de resolução. Dessa maneira, para agilizar a solução de exercícios de um modo geral, apresentaremos três passos que facilitarão bastante o processo!

Os três passos seguintes baseiam-se na fórmula de Bhaskara, que é o método resolutivo para equações do segundo grau mais popular entre os estudantes.

Primeiro passo: Escreva os valores numéricos dos coeficientes a, b e c.

Toda equação do segundo grau pode ser escrita na forma ax2 + bx + c = 0. Desse modo, o coeficiente a é o número que multiplica x2. O coeficiente b é o número que multiplica x e o coeficiente c é um número real. Portanto, dada uma equação do segundo grau, escreva os valores de a, b e c de forma clara, objetiva e evidente para que eventuais consultas a esses valores sejam feitas rapidamente.

Segundo passo: Calcule o valor de delta.

O valor de delta é dado pela seguinte expressão: Δ = b2 – 4ac, em que a, b e c são coeficientes da equação e Δ é delta.

Tomando o exemplo anterior, na equação 2x2 + 8x – 24 = 0, delta vale:

Δ = b2 – 4ac

Δ = 82 – 4·2·(– 24)

Δ = 64 + 192

Δ = 256

Terceiro passo: calcule os valores de x da equação.

Após calcular o valor de delta, os valores de x podem ser obtidos por meio da seguinte expressão:

x = – b ± √Δ

      2·a

Observe que nessa expressão aparece o sinal ±. Isso indica que x possui dois valores: o primeiro para a √Δ (raiz de delta) negativa e o segundo para √Δ positiva.

Tomando o exemplo já citado, observe a conclusão do terceiro passo:

x = – b ± √Δ

      2·a

x = – 8 ± √256

       2·2

x = – 8 ± 16

       4

Para √Δ negativa, teremos:

x' = – 8 – 16 = –24 = –6

           4           4  

Observações importantes:

Ao calcular o valor de Δ, o aluno depara-se com o jogo de sinais. É preciso ter extrema atenção ao termo “– 4ac”, pois, muitas vezes, c possui um valor negativo, o que torna esse termo positivo em virtude do jogo de sinais.

O mesmo ocorre ao encontrar os valores de x. Repare que existe um “– b” na fórmula. Se b for negativo, por causa do jogo de sinais, – b será positivo (+ b).

O valor de Δ pode ser utilizado como parâmetro para decidir como serão as raízes da equação. Uma equação em que Δ > 0 possui duas raízes reais distintas, uma equação em que Δ = 0 possui duas raízes reais iguais ou uma raiz real dupla, isto é, x' = x'', e uma equação em que Δ < 0 não possui raízes reais.

Para ajudar a decorar as fórmulas utilizadas, sempre as escreva em seu caderno para cada exercício que for resolvido, recitando-as em voz alta.

Exemplo:

Quais são as raízes da equação x2 – x – 30 = 0?

Passo 1: a = 1, b = – 1 e c = – 30.

Passo 2: cálculo do valor de delta

Δ = b2 – 4ac

Δ = (–1)2 – 4·1·(–30)

Δ = 1 + 120

Δ = 121

Passo 3: Calcule os valores de x:

x = – b ± √Δ

     2·a

x = – (–1) ± √121

      2·1

x = 1 ± 11

      2

x' = 1 + 11 = 12 = 6

   2         2

Logo, as raízes ou valores de x para essa equação são 6 e – 5.

x'' = 1 – 11 = – 10 = – 5

2          2

Respondido por EinsteinBrainly
0

➡➡ Resposta  ⬅ ⬅

➱ O que é uma equação?  

Equação é uma conta matemática que envolve letras ou seja são chamadas incógnitas as mais usadas são X e Y. E possui muitos graus iremos ver a baixo a do segundo grau.

➱ O que é uma equação de segundo grau?  

É uma equação que possui a incógnita (letra) com maior grau igual a 2.

➱ Como fazer uma resolução de equação normal:  

➤ Para resolvermos equações devemos separar os  números com incógnitas que estão na equação para o lado esquerdo do igual.

➤ E devemos passar os números sem incógnitas para o lado direito do igual.

➤ Quando os números estiver do lado errado do igual mudamos o sinal toda vez que mudar de lado.

➱ Como fazer resolução da equação de segundo grau:  

Tem várias formas mas a mais conhecida e mais usada é a forma de Bhaskara, que é uma forma que descobre a equação pelos seus coeficientes. Mas podemos fazer por eliminação das letras também e usando um pouco das regrinhas abaixo.

Regrinhas:  

➢ Números com incógnitas = lado esquerdo do igual .

➢ Números sem incógnitas = lado direito do igual .

➢ Mudando de lado = mude o sinal também.

➱ Como saber se há raízes reais:  

Vendo se o número possui um sinal negativo ou positivo se o número não tiver sinal nenhum ele é considerado positivo.

===========================================================

➡➡ Exemplos ⬅⬅

➱ Equação normal:

3x+4 - 5= 8x-5

3x - 8x = -5 +5

-5x = 0

x= 0/-5

x= 0  

----------------------------------------

Equação na forma de Bhaskara:

-b ± √∆ × 1/2a

∆ = b² - 4ac

x² - 5x + 6

a = 3

b = -8

c = 4

∆ = (-8)² - 4 × 3 × 4

∆ = 64 - 48

∆ = 1

6

-(-5) ± √16 × 1/2

(5 ± 16)/2

x' = (5 + 16)/2

x' = 21/2

x' = 10.5

x" = (5-16)/2  

x" = -11/2

x" = -55

S = (10.5,-55)

----------------------------------------

Somando o produto:

Soma das raízes = -b/a

Produto das raízes = c/a

x² - 4x + 4

-(-4)/1 = 4

4/1 = 4

Pensa em dois números que somados sejam 8 e multiplicados sejam 16. Esses números são: 4 e 4.

S = (4,4)

===========================================================

➡➡ Explicação ⬅⬅

Forma de Bhaskara:

Equação do segundo grau ➱ ax² + bx + y = 0 com a ≠ 0  

Reescrevemos ➱ ax² + bx = -y

Dividindo por algum número no caso da explicação é com a letra a.  

x² + bx/a = -y/a

Fazendo se tornar notável:

x² + 2bx/2a + b²/4a² = -y/a + b²/4a²  

(x + b/2a)² = -4ay + b²/4a²  

x + b/2a = ± √(-4ay + b²)/2a  

x = -b ± √(b² - 4ay) × 1/2a

----------------------------------------

Soma e Produto:

Equação do segundo grau ➱ ax² + bx + c = 0 com a ≠ 0

Raízes são dadas pela essa equação ➱ x = -b ± √(b² - 4ac) × 1/2a

Som as raízes para conseguirmos algum resultado para ficar perto do final da conta ➱  

x' = x = -b + √(b² - 4ay) × 1/2a

x" = x = -b - √(b² - 4ay) × 1/2a

-b + √(b² - 4ay) - b - √(b² - 4ay)/2a

 

Resposta final: -b/a

----------------------------------------

Descobrindo produto:

x' = x = -b + √(b² - 4ay) × 1/2a

x" = x = -b - √(b² - 4ay) × 1/2a

(-b + √(b² - 4ay) )(-b - √(b² - 4ay) × (1/2a)²

(-b)² - ( √(b² - 4ay) )² × 1/4a²

b² - (b² - 4ay) × 1/4a²  

b² - b² + 4ay × 1/4a²

4ay/4a²

y/a

--------------------------------------------------------------------------------

Estude mais equações:

1- brainly.com.br/tarefa/36203446

2- brainly.com.br/tarefa/36384234

Bons Estudos!!

Perguntas interessantes