Como calcular o valor da equação log(x-2)na base 3 - log(x-2) na base 9=1
Soluções para a tarefa
Respondido por
4
Boa tarde Robinnho
y = x - 2
log3(y) - log9(y) = 1
log(y)/log(3) - log(y)/2log(3) = 1
2log(y)/2log(3) - log(y)/2log(3) = 1
log(y) = 2log(3)
log(y) = log(3^2) = log(9)
y = 9
y = x - 2 = 9
x = 9 + 2 = 11
.
y = x - 2
log3(y) - log9(y) = 1
log(y)/log(3) - log(y)/2log(3) = 1
2log(y)/2log(3) - log(y)/2log(3) = 1
log(y) = 2log(3)
log(y) = log(3^2) = log(9)
y = 9
y = x - 2 = 9
x = 9 + 2 = 11
.
Respondido por
0
A seguinte propriedade será útil no logaritmo de base 9
![\fbox{$\ell og_{a^C}B=\frac{1}{C}\cdot\ell og_aB~~~~(0\ \textless \ a\neq1)$} \fbox{$\ell og_{a^C}B=\frac{1}{C}\cdot\ell og_aB~~~~(0\ \textless \ a\neq1)$}](https://tex.z-dn.net/?f=%5Cfbox%7B%24%5Cell+og_%7Ba%5EC%7DB%3D%5Cfrac%7B1%7D%7BC%7D%5Ccdot%5Cell+og_aB%7E%7E%7E%7E%280%5C+%5Ctextless+%5C+a%5Cneq1%29%24%7D)
Observe
![\ell og_{3}(x-2)-\ell og_{9}(x-2)=1\\\\\ell og_3(x-2)-\ell og_{3^2}(x-2)=1\\\\\ell og_3(x-2)-\frac{1}{2}\ell og_{3}(x-2)=1\\\\(\ell og_3(x-2))\cdot(1-\frac{1}{2})=1\\\\(\ell og_3(x-2))\cdot(\frac{1}{2})=1\\\\\ell og_3(x-2)=2 \ell og_{3}(x-2)-\ell og_{9}(x-2)=1\\\\\ell og_3(x-2)-\ell og_{3^2}(x-2)=1\\\\\ell og_3(x-2)-\frac{1}{2}\ell og_{3}(x-2)=1\\\\(\ell og_3(x-2))\cdot(1-\frac{1}{2})=1\\\\(\ell og_3(x-2))\cdot(\frac{1}{2})=1\\\\\ell og_3(x-2)=2](https://tex.z-dn.net/?f=%5Cell+og_%7B3%7D%28x-2%29-%5Cell+og_%7B9%7D%28x-2%29%3D1%5C%5C%5C%5C%5Cell+og_3%28x-2%29-%5Cell+og_%7B3%5E2%7D%28x-2%29%3D1%5C%5C%5C%5C%5Cell+og_3%28x-2%29-%5Cfrac%7B1%7D%7B2%7D%5Cell+og_%7B3%7D%28x-2%29%3D1%5C%5C%5C%5C%28%5Cell+og_3%28x-2%29%29%5Ccdot%281-%5Cfrac%7B1%7D%7B2%7D%29%3D1%5C%5C%5C%5C%28%5Cell+og_3%28x-2%29%29%5Ccdot%28%5Cfrac%7B1%7D%7B2%7D%29%3D1%5C%5C%5C%5C%5Cell+og_3%28x-2%29%3D2)
Usando a definição de logaritmos
![\fbox{$y=\ell og_aB~\Longleftrightarrow~a^y=B~~~~(0\ \textless \ a\neq1)$} \fbox{$y=\ell og_aB~\Longleftrightarrow~a^y=B~~~~(0\ \textless \ a\neq1)$}](https://tex.z-dn.net/?f=%5Cfbox%7B%24y%3D%5Cell+og_aB%7E%5CLongleftrightarrow%7Ea%5Ey%3DB%7E%7E%7E%7E%280%5C+%5Ctextless+%5C+a%5Cneq1%29%24%7D)
Portanto
![\ell og_3(x-2)=2~\Longleftrightarrow~3^2=x-2\\\\9=x-2\\\\x=11~~~~(\textsf{resposta}) \ell og_3(x-2)=2~\Longleftrightarrow~3^2=x-2\\\\9=x-2\\\\x=11~~~~(\textsf{resposta})](https://tex.z-dn.net/?f=%5Cell+og_3%28x-2%29%3D2%7E%5CLongleftrightarrow%7E3%5E2%3Dx-2%5C%5C%5C%5C9%3Dx-2%5C%5C%5C%5Cx%3D11%7E%7E%7E%7E%28%5Ctextsf%7Bresposta%7D%29)
Observe
Usando a definição de logaritmos
Portanto
Perguntas interessantes
Ed. Física,
11 meses atrás
Sociologia,
11 meses atrás
Matemática,
1 ano atrás
Física,
1 ano atrás
Matemática,
1 ano atrás
Física,
1 ano atrás