Como calcular o perímetro de um triângulo no plano cartesiano
Soluções para a tarefa
Respondido por
0
O perímetro de um triângulo ABC no plano cartesiano será obtido pela soma dos segmentos AB, BC e CA
Distância entre dois pontos no plano cartesiano
Podemos utilizar o teorema de Pitágoras para calcular a distância entre 2 pontos, para isso precisamos obter as medidas dos catetos, portanto devemos utilizar as seguintes expressões matemáticas:
- x = (x'' - x')
- y = (y'' - y')
- x = cateto ⇒ abscissa
- y = cateto ⇒ ordenada
- x'' = coordenada da abscissa do ponto 2
- x' = coordenada da abscissa do ponto 1
- y'' = coordenada da ordenada do ponto 2
- y' = coordenada da ordenada do ponto 1
Sendo que no teorema de Pitágoras:
- a² = b² + c²
- b ⇒ x
- c ⇒ y
- a ⇒ distância entre os pontos, portanto a variável a será equivalente a medidas dos segmentos AB, BC, CA, um de cada vez, ou seja, será necessário aplicar o teorema de Pitágoras três vezes.
a² = b² + c²
a² = (x'' - x')² + (y'' - y')²
a =
Veja mais sobre distância entre 2 pontos no plano cartesiano em:
https://brainly.com.br/tarefa/288153
#SPJ4
Perguntas interessantes
Física,
5 meses atrás
Física,
5 meses atrás
Matemática,
5 meses atrás
Biologia,
11 meses atrás
História,
11 meses atrás