como calcular angulo com 2 retas
Soluções para a tarefa
Respondido por
0
Considere duas retas distintas e concorrentes do plano, r e s, ambas oblíquas aos eixos coordenados e não perpendiculares entre si. As duas retas formam um ângulo entre si, que denominaremos de α. Esse ângulo α é tal que:
Onde ms e mr são os coeficientes angulares das retas s e r, respectivamente.
Se ocorrer de uma das retas ser vertical e a outra oblíqua, o ângulo α formado entre elas é tal que:

Exemplo 1. Determine o ângulo formado entre as retas r: x - y = 0 e s: 3x + 4y – 12 =0
Solução: Para determinar o ângulo formado entre as duas retas, precisamos conhecer o coeficiente angular de cada uma delas. Assim, vamos determinar o coeficiente angular das retas r e s.
Para a reta r, temos:
x - y = 0
y = x
Portanto, mr = 1.
Para a reta s, temos:

Portanto, ms = -3/4
Conhecendo os valores dos coeficientes angulares, basta aplicar a fórmula do ângulo entre duas retas:

Exemplo 2. Determine o ângulo formado entre as retas r: y = 3x + 4 e s: y = – 2x + 8.
Solução: Vamos determinar o coeficiente angular de cada uma das retas dadas.
Para a reta r, temos:
y = 3x + 4
mr = 3
Para a reta s, temos:
y = – 2x + 8
ms = – 2
Aplicando a fórmula do ângulo entre duas retas, obtemos:
Onde ms e mr são os coeficientes angulares das retas s e r, respectivamente.
Se ocorrer de uma das retas ser vertical e a outra oblíqua, o ângulo α formado entre elas é tal que:

Exemplo 1. Determine o ângulo formado entre as retas r: x - y = 0 e s: 3x + 4y – 12 =0
Solução: Para determinar o ângulo formado entre as duas retas, precisamos conhecer o coeficiente angular de cada uma delas. Assim, vamos determinar o coeficiente angular das retas r e s.
Para a reta r, temos:
x - y = 0
y = x
Portanto, mr = 1.
Para a reta s, temos:

Portanto, ms = -3/4
Conhecendo os valores dos coeficientes angulares, basta aplicar a fórmula do ângulo entre duas retas:

Exemplo 2. Determine o ângulo formado entre as retas r: y = 3x + 4 e s: y = – 2x + 8.
Solução: Vamos determinar o coeficiente angular de cada uma das retas dadas.
Para a reta r, temos:
y = 3x + 4
mr = 3
Para a reta s, temos:
y = – 2x + 8
ms = – 2
Aplicando a fórmula do ângulo entre duas retas, obtemos:
Perguntas interessantes
Matemática,
9 meses atrás
Química,
9 meses atrás
Física,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás