Combinação simples
de quantas maneiras distintas pode se formar uma comissao com 10 integrantes a partir de um grupo de 25 pessoas?
passo a passo pf
Soluções para a tarefa
Respondido por
2
C25,10 = 25!/(25-10)!*10!
= 25!/15!*10!
= (25*24*23*22*21*20*19*18*17*16)/10!
=3.268.760. UM ABRAÇO!
= 25!/15!*10!
= (25*24*23*22*21*20*19*18*17*16)/10!
=3.268.760. UM ABRAÇO!
Respondido por
1
Aplicando a formula Cn,p = n!/(n-p)!*p!
n= 25
p= 10
C25,10= 25!/(25-10)!*10!
C25,10= 25!/ (15!*10!)
C25,10 = (25*24*23*22*21*20*19*18*17*16*15!)/(15!*10!)
Simplificando 15! Com 15! Temos
C25,10 = (25*24*23*22*21*20*19*18*17*16)/10!
C25,10 = 3.268.760 maneiras.
n= 25
p= 10
C25,10= 25!/(25-10)!*10!
C25,10= 25!/ (15!*10!)
C25,10 = (25*24*23*22*21*20*19*18*17*16*15!)/(15!*10!)
Simplificando 15! Com 15! Temos
C25,10 = (25*24*23*22*21*20*19*18*17*16)/10!
C25,10 = 3.268.760 maneiras.
Perguntas interessantes