Com simplifica os radicais com letras?
Soluções para a tarefa
Publicado por: Luiz Paulo Moreira Silva em Potenciação0 Comentários
A raiz quadrada de 4 é fácil de ser calculada. Outras, no entanto, dependem de propriedades de radicais para isso
Radical é o símbolo utilizado para indicar o cálculo de raízes. Quando falamos emsimplificação de radicais, referimo-nos à utilização de algumas das propriedades das raízes para facilitar os cálculos que os envolvem.
As simplificações discutidas aqui serão divididas em alguns casos que serão expostos da seguinte maneira: primeiro, a propriedade dos radicias que permite a simplificação e, depois, um exemplo. Observe:
Caso 1 – Expoente e índice múltiplos
Quando os radicais apresentarem índices múltiplos do expoente do radicando (ou vice-versa), a seguinte propriedade dos radicais poderá ser utilizada:
Essa propriedade garante que índice e expoente podem ser multiplicados ou divididos por um número qualquer sem mudar o valor da raiz.
Exemplo:
Note que o número pelo qual o índice e o expoente do radicando foram divididos é 3.
Caso 2 – Utilizando fatoração
Para simplificar alguns radicais, basta reescrever o radicando como produto de fatores primos. Para tanto, fatore o radicando e observe o índice do radical. Supondo que esse índice seja 3, reagrupe os fatores primos encontrados em potências de expoente 3. Depois, basta utilizar a seguinte propriedade:
Esse caso é útil para simplificar radicais como os do exemplo a seguir:
Como x7 = x2·x2·x2·x, substitua o radicando por esse resultado e utilize a propriedade descrita acima.
Caso 3 – Raízes de frações
Quando for necessário simplificar uma raiz de algum número na forma de fração, utilize a seguinte propriedade:
Após cumprir esse passo, basta seguir com a simplificação de raízes para o numerador e para o denominador separadamente.
Caso 4 – Racionalização
Quando aparecem radicais no denominador, é necessário fazer a racionalização deles para prosseguir com a simplificação. Racionalização é o processo feito para criar frações equivalentes em que os radicais estejam apenas no numerador.
Para racionalizar uma fração, multiplique numerador e denominador pelo radical presente no denominador. Observe o exemplo:
Repare no exemplo acima que a fração com radical no denominador foi simplificada e o resultado é apenas raiz de 3.
\sqrt[10:10]{2^{10:10}}
_____________________
Explicando:
Como 1024 = 2 elevado à 10ª potência, a raiz 10ª de 1024 é igual a 2.
_____________________
\sqrt[10]{1024}= \sqrt[10]{2^{10}}
\sqrt[10]{1024}=2^{10/10}
\sqrt[10]{1024}=2^{1}
\sqrt[10]{1024}=2