Com base na figura abaixo, determine:
a) Sen Ã, Cos Ã, Tg Ã
b) Sen C, Cos C, Tg C
Anexos:
![](https://pt-static.z-dn.net/files/d5b/e255d519de429be19c2c85b9d767990e.jpg)
Soluções para a tarefa
Respondido por
4
Caso tenha problemas para visualizar a resposta pelo aplicativo, experimente abrir pelo navegador: https://brainly.com.br/tarefa/8082161
_______________
Calculando a medida da hipotenusa do triângulo retângulo, usando o Teorema de Pitágoras:
![\mathsf{b^2=a^2+c^2}\\\\ \mathsf{b^2=8^2+6^2}\\\\ \mathsf{b^2=64+36}\\\\ \mathsf{b^2=100} \mathsf{b^2=a^2+c^2}\\\\ \mathsf{b^2=8^2+6^2}\\\\ \mathsf{b^2=64+36}\\\\ \mathsf{b^2=100}](https://tex.z-dn.net/?f=%5Cmathsf%7Bb%5E2%3Da%5E2%2Bc%5E2%7D%5C%5C%5C%5C+%5Cmathsf%7Bb%5E2%3D8%5E2%2B6%5E2%7D%5C%5C%5C%5C+%5Cmathsf%7Bb%5E2%3D64%2B36%7D%5C%5C%5C%5C+%5Cmathsf%7Bb%5E2%3D100%7D)
![\mathsf{b=\sqrt{100}}\\\\ \mathsf{b=10}\quad\longleftarrow\quad\textsf{medida da hipotenusa.} \mathsf{b=\sqrt{100}}\\\\ \mathsf{b=10}\quad\longleftarrow\quad\textsf{medida da hipotenusa.}](https://tex.z-dn.net/?f=%5Cmathsf%7Bb%3D%5Csqrt%7B100%7D%7D%5C%5C%5C%5C+%5Cmathsf%7Bb%3D10%7D%5Cquad%5Clongleftarrow%5Cquad%5Ctextsf%7Bmedida+da+hipotenusa.%7D)
__________
a)
•![\mathsf{sen\,\widehat{A}=\dfrac{\textsf{medida do cateto oposto ao \^angulo }\widehat A}{\textsf{medida da hipotenusa}}} \mathsf{sen\,\widehat{A}=\dfrac{\textsf{medida do cateto oposto ao \^angulo }\widehat A}{\textsf{medida da hipotenusa}}}](https://tex.z-dn.net/?f=%5Cmathsf%7Bsen%5C%2C%5Cwidehat%7BA%7D%3D%5Cdfrac%7B%5Ctextsf%7Bmedida+do+cateto+oposto+ao+%5C%5Eangulo+%7D%5Cwidehat+A%7D%7B%5Ctextsf%7Bmedida+da+hipotenusa%7D%7D%7D)
![\mathsf{sen\,\widehat{A}=\dfrac{8}{10}}\\\\\\ \mathsf{sen\,\widehat{A}=0,\!8}\qquad\quad\checkmark \mathsf{sen\,\widehat{A}=\dfrac{8}{10}}\\\\\\ \mathsf{sen\,\widehat{A}=0,\!8}\qquad\quad\checkmark](https://tex.z-dn.net/?f=%5Cmathsf%7Bsen%5C%2C%5Cwidehat%7BA%7D%3D%5Cdfrac%7B8%7D%7B10%7D%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7Bsen%5C%2C%5Cwidehat%7BA%7D%3D0%2C%5C%218%7D%5Cqquad%5Cquad%5Ccheckmark)
•![\mathsf{cos\,\widehat{A}=\dfrac{\textsf{medida do cateto adjacente ao \^angulo }\widehat A}{\textsf{medida da hipotenusa}}} \mathsf{cos\,\widehat{A}=\dfrac{\textsf{medida do cateto adjacente ao \^angulo }\widehat A}{\textsf{medida da hipotenusa}}}](https://tex.z-dn.net/?f=%5Cmathsf%7Bcos%5C%2C%5Cwidehat%7BA%7D%3D%5Cdfrac%7B%5Ctextsf%7Bmedida+do+cateto+adjacente+ao+%5C%5Eangulo+%7D%5Cwidehat+A%7D%7B%5Ctextsf%7Bmedida+da+hipotenusa%7D%7D%7D)
![\mathsf{cos\,\widehat{A}=\dfrac{6}{10}}\\\\\\ \mathsf{cos\,\widehat{A}=0,\!6}\qquad\quad\checkmark \mathsf{cos\,\widehat{A}=\dfrac{6}{10}}\\\\\\ \mathsf{cos\,\widehat{A}=0,\!6}\qquad\quad\checkmark](https://tex.z-dn.net/?f=%5Cmathsf%7Bcos%5C%2C%5Cwidehat%7BA%7D%3D%5Cdfrac%7B6%7D%7B10%7D%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7Bcos%5C%2C%5Cwidehat%7BA%7D%3D0%2C%5C%216%7D%5Cqquad%5Cquad%5Ccheckmark)
•![\mathsf{tg\,\widehat{A}=\dfrac{\textsf{medida do cateto oposto ao \^angulo }\widehat A}{\textsf{medida do cateto adjacente ao \^angulo }\widehat A}} \mathsf{tg\,\widehat{A}=\dfrac{\textsf{medida do cateto oposto ao \^angulo }\widehat A}{\textsf{medida do cateto adjacente ao \^angulo }\widehat A}}](https://tex.z-dn.net/?f=%5Cmathsf%7Btg%5C%2C%5Cwidehat%7BA%7D%3D%5Cdfrac%7B%5Ctextsf%7Bmedida+do+cateto+oposto+ao+%5C%5Eangulo+%7D%5Cwidehat+A%7D%7B%5Ctextsf%7Bmedida+do+cateto+adjacente+ao+%5C%5Eangulo+%7D%5Cwidehat+A%7D%7D)
![\mathsf{tg\,\widehat{A}=\dfrac{6}{8}}\\\\\\ \mathsf{tg\,\widehat{A}=0,\!75}\qquad\quad\checkmark \mathsf{tg\,\widehat{A}=\dfrac{6}{8}}\\\\\\ \mathsf{tg\,\widehat{A}=0,\!75}\qquad\quad\checkmark](https://tex.z-dn.net/?f=%5Cmathsf%7Btg%5C%2C%5Cwidehat%7BA%7D%3D%5Cdfrac%7B6%7D%7B8%7D%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7Btg%5C%2C%5Cwidehat%7BA%7D%3D0%2C%5C%2175%7D%5Cqquad%5Cquad%5Ccheckmark)
__________
b) De forma análoga:
•![\mathsf{sen\,\widehat{C}=\dfrac{\textsf{medida do cateto oposto ao \^angulo }\widehat C}{\textsf{medida da hipotenusa}}} \mathsf{sen\,\widehat{C}=\dfrac{\textsf{medida do cateto oposto ao \^angulo }\widehat C}{\textsf{medida da hipotenusa}}}](https://tex.z-dn.net/?f=%5Cmathsf%7Bsen%5C%2C%5Cwidehat%7BC%7D%3D%5Cdfrac%7B%5Ctextsf%7Bmedida+do+cateto+oposto+ao+%5C%5Eangulo+%7D%5Cwidehat+C%7D%7B%5Ctextsf%7Bmedida+da+hipotenusa%7D%7D%7D)
![\mathsf{sen\,\widehat{C}=\dfrac{6}{10}}\\\\\\ \mathsf{sen\,\widehat{C}=0,\!6}\qquad\quad\checkmark \mathsf{sen\,\widehat{C}=\dfrac{6}{10}}\\\\\\ \mathsf{sen\,\widehat{C}=0,\!6}\qquad\quad\checkmark](https://tex.z-dn.net/?f=%5Cmathsf%7Bsen%5C%2C%5Cwidehat%7BC%7D%3D%5Cdfrac%7B6%7D%7B10%7D%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7Bsen%5C%2C%5Cwidehat%7BC%7D%3D0%2C%5C%216%7D%5Cqquad%5Cquad%5Ccheckmark)
•![\mathsf{cos\,\widehat{C}=\dfrac{\textsf{medida do cateto adjacente ao \^angulo }\widehat C}{\textsf{medida da hipotenusa}}} \mathsf{cos\,\widehat{C}=\dfrac{\textsf{medida do cateto adjacente ao \^angulo }\widehat C}{\textsf{medida da hipotenusa}}}](https://tex.z-dn.net/?f=%5Cmathsf%7Bcos%5C%2C%5Cwidehat%7BC%7D%3D%5Cdfrac%7B%5Ctextsf%7Bmedida+do+cateto+adjacente+ao+%5C%5Eangulo+%7D%5Cwidehat+C%7D%7B%5Ctextsf%7Bmedida+da+hipotenusa%7D%7D%7D)
![\mathsf{cos\,\widehat{C}=\dfrac{8}{10}}\\\\\\ \mathsf{cos\,\widehat{C}=0,\!8}\qquad\quad\checkmark \mathsf{cos\,\widehat{C}=\dfrac{8}{10}}\\\\\\ \mathsf{cos\,\widehat{C}=0,\!8}\qquad\quad\checkmark](https://tex.z-dn.net/?f=%5Cmathsf%7Bcos%5C%2C%5Cwidehat%7BC%7D%3D%5Cdfrac%7B8%7D%7B10%7D%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7Bcos%5C%2C%5Cwidehat%7BC%7D%3D0%2C%5C%218%7D%5Cqquad%5Cquad%5Ccheckmark)
•![\mathsf{tg\,\widehat{C}=\dfrac{\textsf{medida do cateto oposto ao \^angulo }\widehat C}{\textsf{medida do cateto adjacente ao \^angulo }\widehat C}} \mathsf{tg\,\widehat{C}=\dfrac{\textsf{medida do cateto oposto ao \^angulo }\widehat C}{\textsf{medida do cateto adjacente ao \^angulo }\widehat C}}](https://tex.z-dn.net/?f=%5Cmathsf%7Btg%5C%2C%5Cwidehat%7BC%7D%3D%5Cdfrac%7B%5Ctextsf%7Bmedida+do+cateto+oposto+ao+%5C%5Eangulo+%7D%5Cwidehat+C%7D%7B%5Ctextsf%7Bmedida+do+cateto+adjacente+ao+%5C%5Eangulo+%7D%5Cwidehat+C%7D%7D)
![\mathsf{tg\,\widehat{C}=\dfrac{8}{6}}\\\\\\ \mathsf{tg\,\widehat{C}\approx 1,\!33}\qquad\quad\checkmark \mathsf{tg\,\widehat{C}=\dfrac{8}{6}}\\\\\\ \mathsf{tg\,\widehat{C}\approx 1,\!33}\qquad\quad\checkmark](https://tex.z-dn.net/?f=%5Cmathsf%7Btg%5C%2C%5Cwidehat%7BC%7D%3D%5Cdfrac%7B8%7D%7B6%7D%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7Btg%5C%2C%5Cwidehat%7BC%7D%5Capprox+1%2C%5C%2133%7D%5Cqquad%5Cquad%5Ccheckmark)
Bons estudos! :-)
Tags: trigonometria no triângulo retângulo razões trigonométricas seno cosseno tangente sen cos tan tg teorema de pitágoras geometria
_______________
Calculando a medida da hipotenusa do triângulo retângulo, usando o Teorema de Pitágoras:
__________
a)
•
•
•
__________
b) De forma análoga:
•
•
•
Bons estudos! :-)
Tags: trigonometria no triângulo retângulo razões trigonométricas seno cosseno tangente sen cos tan tg teorema de pitágoras geometria
Perguntas interessantes