Matemática, perguntado por tais241, 1 ano atrás

Com a fórmula de Bhaskara, resolva as seguintes equações:

Anexos:

user15: Δ = b² - 4.a.c
user15: Δ = 8² - 4.(-1).9
user15: Δ = 64 - (-36)
user15: Δ = 100
user15: √100 = 10
user15: Entendeu?
tais241: entendei valeu eu errei no jogo de sinal
tais241: vc sabe as outras
user15: Conseguiu fazer as outras?
tais241: ñ consegui

Soluções para a tarefa

Respondido por user15
0
a)
-x^2 + 8x+9=0

a = -1 \\ b = 8 \\ c = 9

x =  \frac{-b\pm \sqrt{b^2-4.a.c} }{2.a}  \\  \\ x = \frac{-8\pm \sqrt{8^2-4.(-1).9}}{2.(-1)} \\  \\ x =  \frac{-8\pm \sqrt{64-(-36)} }{-2}  \\  \\ x =  \frac{-8\pm \sqrt{100} }{-2}  \\  \\ x =  \frac{-8\pm10}{-2}  \\  \\ x' =  \frac{-8+10}{-2} \rightarrow x' =  \frac{2}{-2} \rightarrow x' = -1 \\  \\ x" =  \frac{-8-10}{-2} \rightarrow x" =  \frac{-18}{-2} \rightarrow x" = 9


b)

x^2+9x+8 = 0

a = 1 \\ b = 9 \\ c = 8

\Delta = b^2-4.a.c \\ \Delta = 9^2 - 4.1.8 \\  \Delta = 81 - 32 \\ \Delta = 49 \\  \\ x =  \frac{-b\pm \sqrt{b^2-4.a.c} }{2.a}  \\  \\ x =  \frac{-9\pm \sqrt{49} }{2.1}  \\  \\ x =  \frac{-9\pm7}{2}  \\  \\ x' =  \frac{-9+7}{2} \rightarrow x' =  \frac{-2}{2} \rightarrow x' = -1 \\  \\ x" =  \frac{-9-7}{2} \rightarrow x" =  \frac{-16}{2} \rightarrow x" = -8


c)

x^2+10x+24=-1 \\ x^2 + 10x +25=0 \\  \\ a = 1 \\ b=10 \\ c = 25 \\  \\ \Delta = b^2-4.a.c \\ \Delta = 10^2 - 4.1.25 \\ \Delta = 100-100 \\ \Delta=0 \\  \\ x =  \frac{-b\pm \sqrt{b^2-4.a.c} }{2.a}  \\  \\ x =  \frac{-10\pm \sqrt{0} }{2.1}  \\  \\ x =  \frac{-10}{2}  \\  \\ x = -5


d)

3x^2 - 2x = 0

a = 3 \\ b  = -2 \\ c = 0

\Delta = b^2-4.a.c \\ \Delta = (-2)^2 - 4.3.0 \\ \Delta = 4 \\  \\ x =  \frac{-b\pm \sqrt{b^2-4.a.c} }{2.a}  \\  \\ x =  \frac{-(-2)\pm \sqrt{4} }{2.3}  \\  \\ x =  \frac{2\pm2}{6}  \\  \\ x' =  \frac{2+2}{6} \rightarrow x' =  \frac{4}{6} \rightarrow x' =  \frac{2}{3}  \\  \\ x" =  \frac{2-2}{6} \rightarrow x" = 0


e)

x^2 - 2 \sqrt{2} x+1 = 0 \\  \\ a = 1 \\ b =- 2 \sqrt{2}  \\ c = 1 \\  \\ \Delta = b^2-4.a.c \\ \Delta = (-2 \sqrt{2} )^2 - 4.1.1 \\ \Delta = 8 - 4 \\ \Delta = 4 \\  \\ x =  \frac{-b\pm \sqrt{b^2-4.a.c} }{2.1}  \\  \\ x =  \frac{-(-2 \sqrt{2})\pm \sqrt{4}  }{2.1}  \\  \\ x =  \frac{2 \sqrt{2}\pm2 }{2}  \\  \\ x' =  \frac{2 \sqrt{2}+2 }{2} \rightarrow x' =  \sqrt{2} + 1  \\  \\ x" =  \frac{2 \sqrt{2}-2 }{2} \rightarrow x" =  \sqrt{2} - 1


e)

4x^2 - 9 = 0 \\  \\ a = 4 \\ b = 0 \\ c = -9 \\  \\ \Delta = b^2-4.a.c \\ \Delta = 0-4.4.(-9) \\ \Delta = 144 \\  \\ x =  \frac{-b\pm \sqrt{b^2-4.a.c} }{2.}  \\  \\ x =  \frac{0\pm \sqrt{144} }{2.4}  \\  \\ x =  \frac{\pm12}{8}  \\  \\ x' =  \frac{12}{8} \rightarrow x' =  \frac{3}{2}  \\  \\ x" =  \frac{-12}{8} \rightarrow x" = - \frac{3}{2}


Ok?
Perguntas interessantes