coloque na forma a+bi o numero complexo z= 7+5i/1+i + (i-raiz de 3)³
Soluções para a tarefa
Respondido por
12
Olá, Rayar.
![z= \frac{7+5i}{1+i} + (i-\sqrt3)\³=\frac{(7+5i)(1-i)}{(1+i)(1-i)} + i^3-3i^2\sqrt3+3i\cdot3-3\sqrt3=\\\\
=\frac{7-7i+5i-5i^2}{1-i^2} + i^2\cdot i+\diagup\!\!\!\!3\sqrt3+9i-\diagup\!\!\!\!3\sqrt3=\\\\=\frac{12-2i}2-i+9i=6-i+8i=\boxed{6+7i} z= \frac{7+5i}{1+i} + (i-\sqrt3)\³=\frac{(7+5i)(1-i)}{(1+i)(1-i)} + i^3-3i^2\sqrt3+3i\cdot3-3\sqrt3=\\\\
=\frac{7-7i+5i-5i^2}{1-i^2} + i^2\cdot i+\diagup\!\!\!\!3\sqrt3+9i-\diagup\!\!\!\!3\sqrt3=\\\\=\frac{12-2i}2-i+9i=6-i+8i=\boxed{6+7i}](https://tex.z-dn.net/?f=z%3D+%5Cfrac%7B7%2B5i%7D%7B1%2Bi%7D+%2B+%28i-%5Csqrt3%29%5C%C2%B3%3D%5Cfrac%7B%287%2B5i%29%281-i%29%7D%7B%281%2Bi%29%281-i%29%7D+%2B+i%5E3-3i%5E2%5Csqrt3%2B3i%5Ccdot3-3%5Csqrt3%3D%5C%5C%5C%5C%0A%3D%5Cfrac%7B7-7i%2B5i-5i%5E2%7D%7B1-i%5E2%7D+%2B+i%5E2%5Ccdot+i%2B%5Cdiagup%5C%21%5C%21%5C%21%5C%213%5Csqrt3%2B9i-%5Cdiagup%5C%21%5C%21%5C%21%5C%213%5Csqrt3%3D%5C%5C%5C%5C%3D%5Cfrac%7B12-2i%7D2-i%2B9i%3D6-i%2B8i%3D%5Cboxed%7B6%2B7i%7D)
Perguntas interessantes