claudia realizou uma compra de R$ 1200,00 pagou uma entrada de R$300,00 e pagara duas parcelas mensais e iguais a R$500,00 determine a taxa de juros impostos ao finaciamento de claudia
Soluções para a tarefa
Respondido por
41
=> Valor á vista = 1200
=> Valor da entrada = 200
...estamos perante uma situação de equivalência de capitais tendo "ponto focal" ...o "momento zero"!
Assim sabemos que
Valor á vista = Valor da entrada/(1 + i)⁰ + P1/(1 + i)¹ + P2/(1 + i)²
..como P1 = P2 = 500
1200 = 300/(1 + i)⁰ + 500/(1 + i)¹ + 500/(1 + i)²
1200 = 300/1 + 500/(1 + i)¹ + 500/(1 + i)²
1200 - 300 = 50/(1 + i)¹ + 500/(1 + i)²
900 = 500 . {[1/(1 + i)¹] + [1/(1 + i)²]}
900/500 = [1/(1 + i)¹] + [1/(1 + i)²]
1,8 = [1/(1 + i)¹] + [1/(1 + i)²]
...simplificando ..mmc = (1 + i)²
1,8(1+i)² = [(1 + i)²/(1 + i)¹)] + 1
1,8(1+i)² = (1 + i)¹+ 1
..veja que estamos 'erante uma equação do 2º grau ...se considerarmos (1+i) = x ..teremos
1,8x² - x - 1 = 0
..aplicando a fórmula resolvente encontramos 2 raízes:
R₁ = - 0,518 ...que não interessa pois a taxa de juro ñ pode ser negativa
R₂ = 1,0732
como R₂ = x = (1 + i), então
(1 + i) = 1,0732
i = 1,0732 - 1
i = 0,0732 <-- taxa de juro do financiamento 7,32%
Espero ter ajudado
=> Valor da entrada = 200
...estamos perante uma situação de equivalência de capitais tendo "ponto focal" ...o "momento zero"!
Assim sabemos que
Valor á vista = Valor da entrada/(1 + i)⁰ + P1/(1 + i)¹ + P2/(1 + i)²
..como P1 = P2 = 500
1200 = 300/(1 + i)⁰ + 500/(1 + i)¹ + 500/(1 + i)²
1200 = 300/1 + 500/(1 + i)¹ + 500/(1 + i)²
1200 - 300 = 50/(1 + i)¹ + 500/(1 + i)²
900 = 500 . {[1/(1 + i)¹] + [1/(1 + i)²]}
900/500 = [1/(1 + i)¹] + [1/(1 + i)²]
1,8 = [1/(1 + i)¹] + [1/(1 + i)²]
...simplificando ..mmc = (1 + i)²
1,8(1+i)² = [(1 + i)²/(1 + i)¹)] + 1
1,8(1+i)² = (1 + i)¹+ 1
..veja que estamos 'erante uma equação do 2º grau ...se considerarmos (1+i) = x ..teremos
1,8x² - x - 1 = 0
..aplicando a fórmula resolvente encontramos 2 raízes:
R₁ = - 0,518 ...que não interessa pois a taxa de juro ñ pode ser negativa
R₂ = 1,0732
como R₂ = x = (1 + i), então
(1 + i) = 1,0732
i = 1,0732 - 1
i = 0,0732 <-- taxa de juro do financiamento 7,32%
Espero ter ajudado
Perguntas interessantes
Matemática,
10 meses atrás
Geografia,
10 meses atrás
Português,
10 meses atrás
ENEM,
1 ano atrás
Português,
1 ano atrás
Administração,
1 ano atrás