Matemática, perguntado por laryssaabreumachado, 4 meses atrás

circulo de diametro igual 32cm (area e comprimento)

Soluções para a tarefa

Respondido por CyberKirito
2

\Large\boxed{\begin{array}{l}\underline{\rm Comprimento\,do\,c\acute irculo}\\\sf C=D\cdot\pi\\\sf D\longrightarrow di\hat ametro\\\underline{\rm \acute Area\,do\,c\acute irculo}\\\sf A=\pi\cdot r^2\\\sf D=32\,cm\\\sf r=\dfrac{D}{2}\\\\\sf r=\dfrac{32}{2}\\\\\sf r=16\,cm\\\underline{\boldsymbol{C\acute alculo\,do\,comprimento\!:}}\\\sf C=D\cdot \pi\\\sf C=32\cdot3,14\\\sf C=100,48\,cm\\\underline{\boldsymbol{ \acute Area\,do\,c\acute irculo:}}\\\sf A=\pi\cdot r^2\\\sf A=3,14\cdot16^2\\\sf A=3,14\cdot256\\\sf A=803,84\,cm^2\end{array}}

Respondido por Math739
2

Resposta:

\textsf{Segue a resposta abaixo}

Explicação passo-a-passo:

 \mathsf{d=32\,cm;~\pi=3{,}14;~A=\,?;~C=\,? }

 \mathsf{A=\pi\cdot\left(\dfrac{ d}{2}\right)^2}

 \mathsf{ A=3{,}14\cdot\left(\dfrac{32}{2}\right)^2}

 \mathsf{A=3{,}14\cdot16^2 }

 \mathsf{A=3{,}14\cdot256 }

\boxed{\boxed{\mathsf{A=803{,}84\,cm^2}}}

 \mathsf{C=\pi\cdot d }

 \mathsf{ C=3{,}14\cdot32}

\boxed{\boxed{ \mathsf{ C=100{,}48\,cm}}}

Perguntas interessantes