Cinemática me ajudem! como resolvo este exercício ?? urgente! por favor.
resolva as questões de acordo com as aplicações á cinemática, utilizando as equações horarias, nos problemas seguintes considere a aceleração da gravidade g como sendo, aproximadamente, 9,8m/s²
1) Um projétil é lançado para cima com a velocidade inicial de 100m/s. Encontre o valor de sua velocidade cinco segundos após o lançamento; encontre a altura máxima atingida e o tempo gasto para atingi-la.
2)Nos exercícios A e B, Uma partícula se move ao longo de um eixo com equação horária dada. Encontre as expressões para a velocidade e aceleração, descrevendo o movimento da partícula. fazendo inclusive umas representação esquemática do que ocorre .
a)
b)
Soluções para a tarefa
Respondido por
1
1)
V = Vo+at
V = 100 +(-9,8.5)
V = 100 - 49 = 51 m/s
2) A velocidade é a derivada do espaço e aceleração é a derivada da velocidade.
a) s = t²-8t+12 ( não saiu o expoente do primeiro t, é t² ? )
v = ds/dt = d(t²-8t+12)/dt = 2t-8
a = dv/dt = 2 m/s²
b) mesmo raciocínio da anterior.
V = Vo+at
V = 100 +(-9,8.5)
V = 100 - 49 = 51 m/s
2) A velocidade é a derivada do espaço e aceleração é a derivada da velocidade.
a) s = t²-8t+12 ( não saiu o expoente do primeiro t, é t² ? )
v = ds/dt = d(t²-8t+12)/dt = 2t-8
a = dv/dt = 2 m/s²
b) mesmo raciocínio da anterior.
LuanaBeatriz321:
Obrigado !
Respondido por
1
1. V(0)=100m/s
V(5)=?
Hmax=?
T(Hmax)=?
Supondo g = 10m/s² (contra o movimento),
Significa que a cada segundo, a gravidade reduz a velocidade do projétil em 10m/s
Assim, após 1s, a velocidade é V(1)=100-10.1 = 90 m/s
Analogamente,
V(2)=80m/s
V(3)=70m/s
V(4)=60m/s
V(5)= 50m/s.
Para todos estes cálculos, vale a educação da velocidade: V =Vo+a.t
Vo=100m/s; a=-10m/s².
Hmax ocorre quando V=0 Ou seja, o projétil pára de subir e começa a cair.
O tempo para isso é obtido substituindo V por "0" na equação acima:
V=100-10.t. > V=0
0=100-10.t
10t=100
t=10s.
A velocidade média do lançamento até a subida é dada por Vm=(Vo+V) /2
Vm=(100+0)/2 > Vm=50m/s
Como Vm = ds/dt,
ds=Vm. dt
ds = altura
ds=50.10 > ds=500m.
2
a) (imagino que falta elevar a (²) o 1o termo. Se não, a equação ficaria, simplesmente: - 7.t+12
Supondo essa correção:
S = t²-8t+12
Comparando essa equação com:
S=So+Vo.t+a.t²/2
Temos: So=12;Vo=-8;a=2; (não falou as unidades então vou ignorar).
Aceleração é constante, como espaço varia com t², estamos no movimento uniformemente variado, a equação da velocidade é:
V=Vo+a.t
Assim, V=-8+2.t e a=2;
b) S=t³-9t²+24t+1
Neste caso, vamos usar o processo de derivação para resolver o problema. Usar a "regra do tombo".
A derivada no tempo da equação do espaço nos da a equação da velocidade.
ds/dt = s'(t) = v(t)
Assim,
V = 3.t²-18t+24
E dv/dt=V'(t) =a(t)
Assim,
A = 6.t - 18.
Caso não tenha entendido o passo a passo desse processo, pesquise sobre regra do tombo na Internet ou cobre do seu professor. Você tem o direito de saber e não é toda escola que tem na grade.
Perguntas interessantes
Matemática,
9 meses atrás
Português,
9 meses atrás
Português,
9 meses atrás
Matemática,
1 ano atrás
Português,
1 ano atrás
Português,
1 ano atrás
Direito,
1 ano atrás