Matemática, perguntado por jhonlisboa, 1 ano atrás

Certo tanque de combustível tem o formato de um cone invertido com profundidade de 5 metros e com raio máximo de 4 metros. Quantos litros de combustível cabem, aproximadamente, nesse tanque? Considere = 3,14

a) 20.000 ℓ. b) 50.240 ℓ. c) 83.733,33 ℓ. d) 104666,67 ℓ. e) 150.000 ℓ.

Soluções para a tarefa

Respondido por oliveiramarquesde
37

precisamos calcular o volume do cone tendo sua altura como 5  metros.

(área base) x altura/3 = π.r2 .5/3 = 3,14.42.5/3

Temos então 83.733,33 Litros

Respondido por LouiseSG
50

c) 83.733,33 ℓ.

O volume do cone é obtido dividindo por três o resultado da multiplicação da área de sua base por sua altura e corresponde à medida da capacidade desse sólido geométrico.

V = (área base) x altura/3

Sabendo que a base de um cone é sempre um círculo então na fórmula do volume do cone, teremos:

V = π.r² . h/3

Substituindo os dados:

V = π.r² . h/3

V = π.4² . 5/3

V = 83,733 L

Perguntas interessantes