Cálculo I - Problemas de Otimização
Se numa indústria forem produzidas de 200 a 230 unidades de uma peça, haverá um rendimento semanal de R$ 540,00 por cada unidade. Entretanto se forem produzidas mais de 230 peças, o rendimento semanal em cada peça será reduzido em R$ 2,00 por cada peça a mais. Determine o maior rendimento semanal da indústria.
Soluções para a tarefa
Respondido por
2
Resposta:
Temos que analisar dois trechos
200 ≤ x ≤ 230 e x>230
Se 200 ≤ x ≤ 230 então R(x) = 540x
R(230)=230 *540 =R$ 124.200,00 é o máximo no intervalo 200 ≤ x ≤ 230
-----------------------------------------------------------------------------
Se x>230 então R(x)= 540x -2*(x-230)*x =540x-2x²+ 460*x =1000x -2x²
R(x)=1000x-2x² é uma parábola coma concavidade para baixo
a=-2 < 0 ; b=1000 e c =0
O vértice é um ponto de máximo
Vértice=(vx,vy)
vx=-b/2a=-1000/(-4) =250
R(250)=1000*250 - 2*250² = R$ 125.000,00 é o máximo no intervalo x> 230
Resposta: Rendimento semanal é 250
Perguntas interessantes
Espanhol,
9 meses atrás
Matemática,
9 meses atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
História,
1 ano atrás
Matemática,
1 ano atrás
Psicologia,
1 ano atrás