Calculo 3 teorema de green
F.dr, onde C é o triÂngulo de (0,0) a (0,4) a (2,0) a (0,0) e f(x,y)=(ycosx-xysenx)i +(xy+xcosx)j
Soluções para a tarefa
Respondido por
4
Seja
a curva dada. Como vemos no gráfico, ela não está orientada positivamente (está no sentido horário). Para aplicar o Teorema de Green, devemos integrar na curva reversa, e usar a relação

Ou seja, só trocamos o sinal da integral.
______________________________
Sendo T a área limitada por
(triângulo), temos, pelo Teorema de Green:
![\displaystyle\int_{C}F\cdot dC=\int_{C}P\,dx+Q\,dy=-\iint_{T}\bigg[\dfrac{\partial Q}{\partial x}-\dfrac{\partial P}{\partial y}\bigg]\,dx\,dy \displaystyle\int_{C}F\cdot dC=\int_{C}P\,dx+Q\,dy=-\iint_{T}\bigg[\dfrac{\partial Q}{\partial x}-\dfrac{\partial P}{\partial y}\bigg]\,dx\,dy](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Cint_%7BC%7DF%5Ccdot+dC%3D%5Cint_%7BC%7DP%5C%2Cdx%2BQ%5C%2Cdy%3D-%5Ciint_%7BT%7D%5Cbigg%5B%5Cdfrac%7B%5Cpartial+Q%7D%7B%5Cpartial+x%7D-%5Cdfrac%7B%5Cpartial+P%7D%7B%5Cpartial+y%7D%5Cbigg%5D%5C%2Cdx%5C%2Cdy)
Onde
Encontrando as derivadas parciais:

Daí
![\dfrac{\partial Q}{\partial x}-\dfrac{\partial P}{\partial y}=y+cos(x)-x\,sen(x)-[cos(x)-x\,sen(x)]=y \dfrac{\partial Q}{\partial x}-\dfrac{\partial P}{\partial y}=y+cos(x)-x\,sen(x)-[cos(x)-x\,sen(x)]=y](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cpartial+Q%7D%7B%5Cpartial+x%7D-%5Cdfrac%7B%5Cpartial+P%7D%7B%5Cpartial+y%7D%3Dy%2Bcos%28x%29-x%5C%2Csen%28x%29-%5Bcos%28x%29-x%5C%2Csen%28x%29%5D%3Dy)
Então:

Agora, vamos encontrar a equação da reta que contém a hipotenusa do triângulo
Como a reta passa por
e
, temos a seguinte equação: 
Logo, podemos pensar em x variando em extremos fixos (
) e, para cada x fixado, y varia de 0 até a reta dada
Portanto, pelo Teorema de Fubini, temos
![\displaystyle\int_{C}F\cdot dC=-\int_{0}^{2}\left[\int_{0}^{-2x+4}y\,dy\right]dx\\\\\\=-\dfrac{1}{2}\int_{0}^{2}y^{2}\bigg|_{y=0}^{y=-2x+4}dx=-\dfrac{1}{2}\int_{0}^{2}(-2x+4)^{2}dx \displaystyle\int_{C}F\cdot dC=-\int_{0}^{2}\left[\int_{0}^{-2x+4}y\,dy\right]dx\\\\\\=-\dfrac{1}{2}\int_{0}^{2}y^{2}\bigg|_{y=0}^{y=-2x+4}dx=-\dfrac{1}{2}\int_{0}^{2}(-2x+4)^{2}dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Cint_%7BC%7DF%5Ccdot+dC%3D-%5Cint_%7B0%7D%5E%7B2%7D%5Cleft%5B%5Cint_%7B0%7D%5E%7B-2x%2B4%7Dy%5C%2Cdy%5Cright%5Ddx%5C%5C%5C%5C%5C%5C%3D-%5Cdfrac%7B1%7D%7B2%7D%5Cint_%7B0%7D%5E%7B2%7Dy%5E%7B2%7D%5Cbigg%7C_%7By%3D0%7D%5E%7By%3D-2x%2B4%7Ddx%3D-%5Cdfrac%7B1%7D%7B2%7D%5Cint_%7B0%7D%5E%7B2%7D%28-2x%2B4%29%5E%7B2%7Ddx)
Fazendo

Então:
![\displaystyle\int_{C}F\cdot dC=-\dfrac{1}{2}\int_{0}^{2}(-2x+4)^{2}dx=-\dfrac{1}{2}\int_{4}^{0}u^{2}\bigg(-\frac{1}{2}\bigg)du\\\\\\=-\dfrac{1}{4}\int_{0}^{4}u^{2}du=-\dfrac{1}{4}\bigg[\dfrac{u^{3}}{3}\bigg]_{0}^{4}=-\dfrac{1}{12}(4^{3}-0^{3})=-\dfrac{64}{12}\\\\\\\boxed{\boxed{\displaystyle\int_{C}F\cdot dC=-\dfrac{16}{3}}} \displaystyle\int_{C}F\cdot dC=-\dfrac{1}{2}\int_{0}^{2}(-2x+4)^{2}dx=-\dfrac{1}{2}\int_{4}^{0}u^{2}\bigg(-\frac{1}{2}\bigg)du\\\\\\=-\dfrac{1}{4}\int_{0}^{4}u^{2}du=-\dfrac{1}{4}\bigg[\dfrac{u^{3}}{3}\bigg]_{0}^{4}=-\dfrac{1}{12}(4^{3}-0^{3})=-\dfrac{64}{12}\\\\\\\boxed{\boxed{\displaystyle\int_{C}F\cdot dC=-\dfrac{16}{3}}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Cint_%7BC%7DF%5Ccdot+dC%3D-%5Cdfrac%7B1%7D%7B2%7D%5Cint_%7B0%7D%5E%7B2%7D%28-2x%2B4%29%5E%7B2%7Ddx%3D-%5Cdfrac%7B1%7D%7B2%7D%5Cint_%7B4%7D%5E%7B0%7Du%5E%7B2%7D%5Cbigg%28-%5Cfrac%7B1%7D%7B2%7D%5Cbigg%29du%5C%5C%5C%5C%5C%5C%3D-%5Cdfrac%7B1%7D%7B4%7D%5Cint_%7B0%7D%5E%7B4%7Du%5E%7B2%7Ddu%3D-%5Cdfrac%7B1%7D%7B4%7D%5Cbigg%5B%5Cdfrac%7Bu%5E%7B3%7D%7D%7B3%7D%5Cbigg%5D_%7B0%7D%5E%7B4%7D%3D-%5Cdfrac%7B1%7D%7B12%7D%284%5E%7B3%7D-0%5E%7B3%7D%29%3D-%5Cdfrac%7B64%7D%7B12%7D%5C%5C%5C%5C%5C%5C%5Cboxed%7B%5Cboxed%7B%5Cdisplaystyle%5Cint_%7BC%7DF%5Ccdot+dC%3D-%5Cdfrac%7B16%7D%7B3%7D%7D%7D)
Ou seja, só trocamos o sinal da integral.
______________________________
Sendo T a área limitada por
Onde
Encontrando as derivadas parciais:
Daí
Então:
Agora, vamos encontrar a equação da reta que contém a hipotenusa do triângulo
Como a reta passa por
Logo, podemos pensar em x variando em extremos fixos (
Portanto, pelo Teorema de Fubini, temos
Fazendo
Então:
Anexos:

matematicando:
Não entendi a parte da eq. da reta como se chga naquilo
Perguntas interessantes