Calcule utilizando a fórmula do binômio de newton:
[4-
] ³
Soluções para a tarefa
Respondido por
2
Caso esteja pelo app, experimente abrir pelo navegador: https://brainly.com.br/tarefa/8576023
—————
O desenvolvimento do Binômio de Newton
![\mathsf{(v+w)^n} \mathsf{(v+w)^n}](https://tex.z-dn.net/?f=%5Cmathsf%7B%28v%2Bw%29%5En%7D)
possui n + 1 termos, e o termo da posição p + 1 é dado por
![\mathsf{t_{p+1}=\dbinom{n}{p}\cdot v^{n-p}\cdot w^p} \mathsf{t_{p+1}=\dbinom{n}{p}\cdot v^{n-p}\cdot w^p}](https://tex.z-dn.net/?f=%5Cmathsf%7Bt_%7Bp%2B1%7D%3D%5Cdbinom%7Bn%7D%7Bp%7D%5Ccdot+v%5E%7Bn-p%7D%5Ccdot+w%5Ep%7D)
A expansão é dada por
![\mathsf{(v+w)^n=\displaystyle\sum_{p=0}^n\binom{n}{p}\cdot v^{n-p}\cdot w^p}\\\\\\\mathsf{(v+w)^n=\displaystyle\sum_{p=0}^n t_{p+1}} \mathsf{(v+w)^n=\displaystyle\sum_{p=0}^n\binom{n}{p}\cdot v^{n-p}\cdot w^p}\\\\\\\mathsf{(v+w)^n=\displaystyle\sum_{p=0}^n t_{p+1}}](https://tex.z-dn.net/?f=%5Cmathsf%7B%28v%2Bw%29%5En%3D%5Cdisplaystyle%5Csum_%7Bp%3D0%7D%5En%5Cbinom%7Bn%7D%7Bp%7D%5Ccdot+v%5E%7Bn-p%7D%5Ccdot+w%5Ep%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7B%28v%2Bw%29%5En%3D%5Cdisplaystyle%5Csum_%7Bp%3D0%7D%5En+t_%7Bp%2B1%7D%7D)
—————
Expandir
![\mathsf{(4-2^{1/2})^3\quad\longrightarrow\quad v=4,~~w=-2^{1/2},~~n=3} \mathsf{(4-2^{1/2})^3\quad\longrightarrow\quad v=4,~~w=-2^{1/2},~~n=3}](https://tex.z-dn.net/?f=%5Cmathsf%7B%284-2%5E%7B1%2F2%7D%29%5E3%5Cquad%5Clongrightarrow%5Cquad+v%3D4%2C%7E%7Ew%3D-2%5E%7B1%2F2%7D%2C%7E%7En%3D3%7D)
O desenvolvimento terá 3 + 1 = 4 termos.
• 1º termo:
![\mathsf{t_1=\dbinom{3}{0}\cdot 4^3\cdot (-2^{1/2})^0}\\\\\\ \mathsf{t_1=1\cdot 64\cdot 1}\\\\ \mathsf{t_1=64} \mathsf{t_1=\dbinom{3}{0}\cdot 4^3\cdot (-2^{1/2})^0}\\\\\\ \mathsf{t_1=1\cdot 64\cdot 1}\\\\ \mathsf{t_1=64}](https://tex.z-dn.net/?f=%5Cmathsf%7Bt_1%3D%5Cdbinom%7B3%7D%7B0%7D%5Ccdot+4%5E3%5Ccdot+%28-2%5E%7B1%2F2%7D%29%5E0%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7Bt_1%3D1%5Ccdot+64%5Ccdot+1%7D%5C%5C%5C%5C+%5Cmathsf%7Bt_1%3D64%7D)
• 2º termo:
![\mathsf{t_2=\dbinom{3}{1}\cdot 4^{3-1}\cdot (-2^{1/2})^1}\\\\\\ \mathsf{t_2=3\cdot 4^2\cdot (-2^{1/2})}\\\\ \mathsf{t_2=3\cdot 16\cdot (-2^{1/2})}\\\\\mathsf{t_2=-\,48\cdot 2^{1/2}} \mathsf{t_2=\dbinom{3}{1}\cdot 4^{3-1}\cdot (-2^{1/2})^1}\\\\\\ \mathsf{t_2=3\cdot 4^2\cdot (-2^{1/2})}\\\\ \mathsf{t_2=3\cdot 16\cdot (-2^{1/2})}\\\\\mathsf{t_2=-\,48\cdot 2^{1/2}}](https://tex.z-dn.net/?f=%5Cmathsf%7Bt_2%3D%5Cdbinom%7B3%7D%7B1%7D%5Ccdot+4%5E%7B3-1%7D%5Ccdot+%28-2%5E%7B1%2F2%7D%29%5E1%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7Bt_2%3D3%5Ccdot+4%5E2%5Ccdot+%28-2%5E%7B1%2F2%7D%29%7D%5C%5C%5C%5C+%5Cmathsf%7Bt_2%3D3%5Ccdot+16%5Ccdot+%28-2%5E%7B1%2F2%7D%29%7D%5C%5C%5C%5C%5Cmathsf%7Bt_2%3D-%5C%2C48%5Ccdot+2%5E%7B1%2F2%7D%7D)
• 3º termo:
![\mathsf{t_3=\dbinom{3}{2}\cdot 4^{3-2}\cdot (-2^{1/2})^2}\\\\\\ \mathsf{t_3=3\cdot 4^1\cdot (-2^{1/2})^2}\\\\ \mathsf{t_3=3\cdot 4\cdot 2^1}\\\\\mathsf{t_3=24} \mathsf{t_3=\dbinom{3}{2}\cdot 4^{3-2}\cdot (-2^{1/2})^2}\\\\\\ \mathsf{t_3=3\cdot 4^1\cdot (-2^{1/2})^2}\\\\ \mathsf{t_3=3\cdot 4\cdot 2^1}\\\\\mathsf{t_3=24}](https://tex.z-dn.net/?f=%5Cmathsf%7Bt_3%3D%5Cdbinom%7B3%7D%7B2%7D%5Ccdot+4%5E%7B3-2%7D%5Ccdot+%28-2%5E%7B1%2F2%7D%29%5E2%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7Bt_3%3D3%5Ccdot+4%5E1%5Ccdot+%28-2%5E%7B1%2F2%7D%29%5E2%7D%5C%5C%5C%5C+%5Cmathsf%7Bt_3%3D3%5Ccdot+4%5Ccdot+2%5E1%7D%5C%5C%5C%5C%5Cmathsf%7Bt_3%3D24%7D)
• 4º termo:
![\mathsf{t_4=\dbinom{3}{3}\cdot 4^{3-3}\cdot (-2^{1/2})^3}\\\\\\ \mathsf{t_4=1\cdot 4^0\cdot (-2^{1/2})^3}\\\\ \mathsf{t_4=1\cdot 1\cdot (-2^{3/2})}\\\\\mathsf{t_4=-\,2^{3/2}} \mathsf{t_4=\dbinom{3}{3}\cdot 4^{3-3}\cdot (-2^{1/2})^3}\\\\\\ \mathsf{t_4=1\cdot 4^0\cdot (-2^{1/2})^3}\\\\ \mathsf{t_4=1\cdot 1\cdot (-2^{3/2})}\\\\\mathsf{t_4=-\,2^{3/2}}](https://tex.z-dn.net/?f=%5Cmathsf%7Bt_4%3D%5Cdbinom%7B3%7D%7B3%7D%5Ccdot+4%5E%7B3-3%7D%5Ccdot+%28-2%5E%7B1%2F2%7D%29%5E3%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7Bt_4%3D1%5Ccdot+4%5E0%5Ccdot+%28-2%5E%7B1%2F2%7D%29%5E3%7D%5C%5C%5C%5C+%5Cmathsf%7Bt_4%3D1%5Ccdot+1%5Ccdot+%28-2%5E%7B3%2F2%7D%29%7D%5C%5C%5C%5C%5Cmathsf%7Bt_4%3D-%5C%2C2%5E%7B3%2F2%7D%7D)
Portanto,
![\mathsf{(4-2^{1/2})^3=64-48\cdot 2^{1/2}+24-2^{3/2}}\\\\ \mathsf{(4-2^{1/2})^3=64+24-48\cdot 2^{1/2}-2^{1+(1/2)}}\\\\ \mathsf{(4-2^{1/2})^3=88-48\cdot 2^{1/2}-2\cdot 2^{1/2}}\\\\ \mathsf{(4-2^{1/2})^3=88-(48+2)\cdot 2^{1/2}} \mathsf{(4-2^{1/2})^3=64-48\cdot 2^{1/2}+24-2^{3/2}}\\\\ \mathsf{(4-2^{1/2})^3=64+24-48\cdot 2^{1/2}-2^{1+(1/2)}}\\\\ \mathsf{(4-2^{1/2})^3=88-48\cdot 2^{1/2}-2\cdot 2^{1/2}}\\\\ \mathsf{(4-2^{1/2})^3=88-(48+2)\cdot 2^{1/2}}](https://tex.z-dn.net/?f=%5Cmathsf%7B%284-2%5E%7B1%2F2%7D%29%5E3%3D64-48%5Ccdot+2%5E%7B1%2F2%7D%2B24-2%5E%7B3%2F2%7D%7D%5C%5C%5C%5C+%5Cmathsf%7B%284-2%5E%7B1%2F2%7D%29%5E3%3D64%2B24-48%5Ccdot+2%5E%7B1%2F2%7D-2%5E%7B1%2B%281%2F2%29%7D%7D%5C%5C%5C%5C+%5Cmathsf%7B%284-2%5E%7B1%2F2%7D%29%5E3%3D88-48%5Ccdot+2%5E%7B1%2F2%7D-2%5Ccdot+2%5E%7B1%2F2%7D%7D%5C%5C%5C%5C+%5Cmathsf%7B%284-2%5E%7B1%2F2%7D%29%5E3%3D88-%2848%2B2%29%5Ccdot+2%5E%7B1%2F2%7D%7D)
![\mathsf{(4-2^{1/2})^3=88-50\cdot 2^{1/2}}\quad\longleftarrow\quad\textsf{esta \'e a resposta.} \mathsf{(4-2^{1/2})^3=88-50\cdot 2^{1/2}}\quad\longleftarrow\quad\textsf{esta \'e a resposta.}](https://tex.z-dn.net/?f=%5Cmathsf%7B%284-2%5E%7B1%2F2%7D%29%5E3%3D88-50%5Ccdot+2%5E%7B1%2F2%7D%7D%5Cquad%5Clongleftarrow%5Cquad%5Ctextsf%7Besta+%5C%27e+a+resposta.%7D)
Bons estudos! :-)
—————
O desenvolvimento do Binômio de Newton
possui n + 1 termos, e o termo da posição p + 1 é dado por
A expansão é dada por
—————
Expandir
O desenvolvimento terá 3 + 1 = 4 termos.
• 1º termo:
• 2º termo:
• 3º termo:
• 4º termo:
Portanto,
Bons estudos! :-)
Perguntas interessantes
Química,
11 meses atrás
História,
11 meses atrás
Física,
11 meses atrás
Contabilidade,
1 ano atrás
Matemática,
1 ano atrás