Matemática, perguntado por thalitan, 1 ano atrás

calcule tres numeros em pg tais que a soma seja 7 e seu produto 8

Soluções para a tarefa

Respondido por Usuário anônimo
10
x/q,x,xq

(x/q)(x)(xq)=8
x³=8
x=2

2/q+2+2q=7
2+2q+2q²=7q
2q²-5q+2=0
(q-2)(2q-1)=0
q-2=0 ou 2q-1=0
q=2 ou 2q=1
q=2 ou q=1/2

Sua PG pode ser:

(1,2,4)

ou

(4,2,1)

thalitan: vc poderia me explicar ?
Usuário anônimo: o que vc nao entendeu?
thalitan: nao
Usuário anônimo: ...
Usuário anônimo: nao o que?
thalitan: pode deixar ja entendi vllw
Respondido por reuabg
2

Os três números de uma PG cuja soma é 7 e produto é 8 são 1, 2 e 4.

Para resolvermos esse exercício, temos que aprender que em uma PG, para obtermos o próximo termo em uma sequência, devemos multiplicar o termo pela razão r, e para obtermos o anterior, devemos dividir pela razão r.

Assim, para três termos em sequência, temos que seus valores são x/r, x, xr, onde r é a razão e x é um termo arbitrário.

Com isso, é desejado que a soma desses termos seja 7 e o produto 8.

Assim, temos que x/r*x*xr = x³, e isso possui o valor 8. Então, x³ = 8, ou x = ∛8 = 2.

Com isso, temos que 2/r + 2 + 2r = 7. Multiplicando todos os termos por r, temos que 2r² + 2r + 2 = 7r, ou 2r² - 5 + 2 = 0.

Utilizando a fórmula de Bhaskara para descobrir o valor da razão r, com a = 2, b = -5, c = 2, temos:

                                                 raiz_{1,2} = \frac{-b\pm\sqrt{b^2 - 4ac}}{2a} \\raiz_{1,2} = \frac{-(-5)\pm\sqrt{(-5)^2 - 4*2*2}}{2*2}\\raiz_{1,2} = \frac{5\pm\sqrt{25 - 4*2*2}}{4}\\raiz_{1,2} = \frac{5\pm\sqrt{25 -16}}{4}\\raiz_{1,2} = \frac{5\pm\sqrt{9}}{4}\\\\raiz_{1,2} = \frac{5\pm3}{4}\\\\raiz_{1} = \frac{5+3}{4} = 2\\\\raiz_{2} = \frac{5-3}{4} = \frac{1}{2} \\

Com isso, temos que as razões r são 2 e 1/2.

Aplicando esses valores na expressão 2/r + 2 + 2r = 7, obtemos as sequências:

→ 2/2 + 2 + 2 x 2 = 7 → 1 + 2 + 4 = 7

→ 2/1/2 + 2 + 2 x 1/2 = 7 → 4 + 2 + 1 = 7

Com isso, os três números de uma PG cuja soma é 7 e o produto é 8 são 1, 2 e 4.

Para aprender mais, acesse

https://brainly.com.br/tarefa/38413948

https://brainly.com.br/tarefa/38666058

https://brainly.com.br/tarefa/45845804

Anexos:
Perguntas interessantes