Matemática, perguntado por pedrogaragorry1, 6 meses atrás

Calcule senB, cosB e determine o valor de cos2B + sen2B.

Anexos:

Soluções para a tarefa

Respondido por auditsys
1

Resposta:

\textsf{Leia abaixo}

Explicação passo a passo:

\mathsf{sen\:\Theta = \dfrac{cateto\:oposto}{hipotenusa}}

\mathsf{sen\:B = \dfrac{4}{4\sqrt{2}}}

\mathsf{sen\:B = \dfrac{1}{\sqrt{2}}}

\mathsf{sen\:B = \dfrac{\sqrt{2}}{2}}

\mathsf{cos\:\Theta = \dfrac{cateto\:adjacente}{hipotenusa}}

\mathsf{cos\:B = \dfrac{4}{4\sqrt{2}}}

\mathsf{cos\:B = \dfrac{1}{\sqrt{2}}}

\mathsf{cos\:B = \dfrac{\sqrt{2}}{2}}

\mathsf{cos^2\:B + sen^2\:B = \left(\dfrac{\sqrt{2}}{2}\right)^2 + \left(\dfrac{\sqrt{2}}{2}\right)^2}

\mathsf{cos^2\:B + sen^2\:B = \left(\dfrac{2}{4}\right) + \left(\dfrac{2}{4}\right)}

\mathsf{cos^2\:B + sen^2\:B = \left(\dfrac{4}{4}\right)}

\boxed{\boxed{\mathsf{cos^2\:B + sen^2\:B = 1}}}

Perguntas interessantes