Matemática, perguntado por carolinarita123, 1 ano atrás

calcule sem o uso da calculadora a tangente de 105

Soluções para a tarefa

Respondido por Peterson42
3

Olá!

Use a soma de ângulos:

tg\:105°=tg\:(\frac{\pi}{4}+\frac{\pi}{3})

Sabendo que tg(\alpha+\beta)=\frac{sen(\alpha+\beta)}{cos(\alpha+\beta)}

\frac{sen(\alpha)cos(\beta)}{cos(\alpha)cos(\beta)-sen(\alpha)sen(\beta)}+\frac{cos(\alpha)sen(\beta)}{cos(\alpha)cos(\beta)-sen(\alpha)sen(\beta)}

\frac{sen(\frac{\pi}{4})cos(\frac{\pi}{3})}{cos(\frac{\pi}{4})cos(\frac{\pi}{3})-sen(\frac{\pi}{4})sen(\frac{\pi}{3})}+\frac{cos(\frac{\pi}{4})sen(\frac{\pi}{3})}{cos(\frac{\pi}{4})cos(\frac{\pi}{3})-sen(\frac{\pi}{4})sen(\frac{\pi}{3})}

\frac{\frac{\sqrt{2}}{2}\frac{1}{2}}{\frac{\sqrt{2}}{2}\frac{1}{2}-\frac{\sqrt{2}}{2}\frac{\sqrt{3}}{2}}+\frac{\frac{\sqrt{2}}{2}\frac{\sqrt{3}}{2}}{\frac{\sqrt{2}}{2}\frac{1}{2}-\frac{\sqrt{2}}{2}\frac{\sqrt{3}}{2}}

tg(\frac{\pi}{4}+\frac{\pi}{3})=\fbox{-2-\sqrt{3}}

Espero ter ajudado.

Bons estudos!


Perguntas interessantes