Calcule pela definição as derivadas parcias de primeira ordem:
a) f(x,y)=x²-xy+2y²
b)f(x,y)= sqrt(3x-y)
Luanferrao:
a letra b é raiz de 3x-y?
Soluções para a tarefa
Respondido por
1
Pela definição, temos que:
![\boxed{f(x,y) = \frac{\partial\ f}{\partial\ x}} \boxed{f(x,y) = \frac{\partial\ f}{\partial\ x}}](https://tex.z-dn.net/?f=%5Cboxed%7Bf%28x%2Cy%29+%3D+%5Cfrac%7B%5Cpartial%5C+f%7D%7B%5Cpartial%5C+x%7D%7D)
![\boxed{f(x,y)=\frac{\partial\ f}{\partial\ y}} \boxed{f(x,y)=\frac{\partial\ f}{\partial\ y}}](https://tex.z-dn.net/?f=%5Cboxed%7Bf%28x%2Cy%29%3D%5Cfrac%7B%5Cpartial%5C+f%7D%7B%5Cpartial%5C+y%7D%7D)
a)
![f(x,y)=\frac{\partial\ f}{\partial\ x}\\\\ \frac{\partial\ f}{\partial\ x}=2x-y+0\\\\ \boxed{\frac{\partial\ f}{\partial\ x}=2x-y} f(x,y)=\frac{\partial\ f}{\partial\ x}\\\\ \frac{\partial\ f}{\partial\ x}=2x-y+0\\\\ \boxed{\frac{\partial\ f}{\partial\ x}=2x-y}](https://tex.z-dn.net/?f=f%28x%2Cy%29%3D%5Cfrac%7B%5Cpartial%5C+f%7D%7B%5Cpartial%5C+x%7D%5C%5C%5C%5C+%5Cfrac%7B%5Cpartial%5C+f%7D%7B%5Cpartial%5C+x%7D%3D2x-y%2B0%5C%5C%5C%5C+%5Cboxed%7B%5Cfrac%7B%5Cpartial%5C+f%7D%7B%5Cpartial%5C+x%7D%3D2x-y%7D)
![f(x,y)=\frac{\partial\ f}{\partial\ y}\\\\ \frac{\partial\ f}{\partial\ y}=0-x+4y\\\\ \boxed{\frac{\partial\ f}{\partial\ y}=4y-x} f(x,y)=\frac{\partial\ f}{\partial\ y}\\\\ \frac{\partial\ f}{\partial\ y}=0-x+4y\\\\ \boxed{\frac{\partial\ f}{\partial\ y}=4y-x}](https://tex.z-dn.net/?f=f%28x%2Cy%29%3D%5Cfrac%7B%5Cpartial%5C+f%7D%7B%5Cpartial%5C+y%7D%5C%5C%5C%5C+%5Cfrac%7B%5Cpartial%5C+f%7D%7B%5Cpartial%5C+y%7D%3D0-x%2B4y%5C%5C%5C%5C+%5Cboxed%7B%5Cfrac%7B%5Cpartial%5C+f%7D%7B%5Cpartial%5C+y%7D%3D4y-x%7D)
b)
![f(x,y)=\sqrt{3x-y}\\\\ f(x,y)=\frac{\partial\ f}{\partial\ x}\\\\ \boxed{\frac{\partial\ f}{\partial\ x}=\frac{3}{2\sqrt{3x-y}}} f(x,y)=\sqrt{3x-y}\\\\ f(x,y)=\frac{\partial\ f}{\partial\ x}\\\\ \boxed{\frac{\partial\ f}{\partial\ x}=\frac{3}{2\sqrt{3x-y}}}](https://tex.z-dn.net/?f=f%28x%2Cy%29%3D%5Csqrt%7B3x-y%7D%5C%5C%5C%5C+f%28x%2Cy%29%3D%5Cfrac%7B%5Cpartial%5C+f%7D%7B%5Cpartial%5C+x%7D%5C%5C%5C%5C+%5Cboxed%7B%5Cfrac%7B%5Cpartial%5C+f%7D%7B%5Cpartial%5C+x%7D%3D%5Cfrac%7B3%7D%7B2%5Csqrt%7B3x-y%7D%7D%7D)
![f(x,y)=\frac{\partial\ f}{\partial\ y}\\\\\ \boxed{\frac{\partial\ f}{\partial\ y}=\frac{-1}{2\sqrt{3x-y}} } f(x,y)=\frac{\partial\ f}{\partial\ y}\\\\\ \boxed{\frac{\partial\ f}{\partial\ y}=\frac{-1}{2\sqrt{3x-y}} }](https://tex.z-dn.net/?f=f%28x%2Cy%29%3D%5Cfrac%7B%5Cpartial%5C+f%7D%7B%5Cpartial%5C+y%7D%5C%5C%5C%5C%5C++%5Cboxed%7B%5Cfrac%7B%5Cpartial%5C+f%7D%7B%5Cpartial%5C+y%7D%3D%5Cfrac%7B-1%7D%7B2%5Csqrt%7B3x-y%7D%7D+%7D)
a)
b)
Perguntas interessantes