Matemática, perguntado por isabellecosta25, 1 ano atrás

Calcule p,p>3,sendo dado:

Anexos:

Soluções para a tarefa

Respondido por lamacch
21
 \frac{ \frac{(p-1)!}{2!(p-3)!} + \frac{(p-1)!}{3!(p-4)!} }{ \frac{p!}{2!(p-2)!} - \frac{(p-1)!}{1!(p-2)!} } = \frac{5}{3}

 \frac{ \frac{(p-1).(p-2).(p-3)!}{2.(p-3)!} + \frac{(p-1).(p-2).(p-3).(p-4)!}{3.2.(p-4)!} }{ \frac{p.(p-1).(p-2)!}{2.(p-2)!} - \frac{(p-1).(p-2)!}{(p-2)!} } = \frac{5}{3}

 \frac{ \frac{(p-1).(p-2)}{2} + \frac{(p-1).(p-2).(p-3)}{6} }{ \frac{p.(p-1)}{2} - \frac{(p-1)}{1} } = \frac{5}{3}

 \frac{ \frac{3.(p-1).(p-2)}{6} + \frac{(p-1).(p-2).(p-3)}{6} }{ \frac{p.(p-1)}{2} - \frac{2.(p-1)}{2} } = \frac{5}{3}

 \frac{ \frac{3.(p-1).(p-2)+(p-1).(p-2).(p-3)}{6}  }{ \frac{p.(p-1)-2.(p-1)}{2} } = \frac{5}{3}

 \frac{ \frac{(p-1).(p-2).[3+(p-3)]}{6}  }{ \frac{(p-1).(p-2)}{2} } = \frac{5}{3}

 \frac{(p-1).(p-2).p}{6} . \frac{2}{(p-1).(p-2)}  = \frac{5}{3}

 \frac{p}{6} . \frac{2}{1}  = \frac{5}{3}

 \frac{p}{3} . \frac{1}{1}  = \frac{5}{3}

 \frac{p}{3}  = \frac{5}{3}

 \frac{p}{1}  = \frac{5}{1}

p=5
Respondido por larimaria05
0

Resposta:

p=5

Explicação passo a passo:

vou usar matriz, pois esse símbolo não tem aqui

na parte de cima, usando Stifel

\left[\begin{array}{ccc}p-1+1\\2+1\end{array}\right] \\\left[\begin{array}{ccc}p\\3\end{array}\right]

na parte de baixo, usando Stifel também

\left[\begin{array}{ccc}p-1\\1\end{array}\right]    +  \left[\begin{array}{ccc}p-1\\2\end{array}\right]   = \left[\begin{array}{ccc}p-1+1\\1+1 \end{array}\right]   = \left[\begin{array}{ccc}p\\2\end{array}\right]

logo

\left[\begin{array}{ccc}p-1\\1\end{array}\right]   + \left[\begin{array}{ccc}p-1\\2\end{array}\right] =   \left[\begin{array}{ccc}p\\2\end{array}\right]      \\\\\left[\begin{array}{ccc}p-1\\2\end{array}\right]  = \left[\begin{array}{ccc}p\\2\end{array}\right]   - \left[\begin{array}{ccc}p-1\\1\end{array}\right]

substituindo

\frac{\left[\begin{array}{ccc}p\\3\\\end{array}\right] }{\left[\begin{array}{ccc}p-1\\2\end{array}\right] } = \frac{5}{3}

multiplica em cruz

\left[\begin{array}{ccc}p\\3\end{array}\right] 3 =    \left[\begin{array}{ccc}p-1\\2\end{array}\right]    5\\\\\frac{3 (p)(p-1)}{3.2.1} =\frac{5(p-1)}{2.1}

simplifica

\frac{ (p)}{1} =\frac{5}{1}\\p=5

Perguntas interessantes