Matemática, perguntado por JoãoOliveirahh, 1 ano atrás

Calcule os seguintes logaritmos

a) log16 3 \sqrt{8}
b) log4 √2
c) log 7/3 9/49
d) log 1,25 0,64

Soluções para a tarefa

Respondido por Usuário anônimo
1
João

Ajudo com as três primeiras
Na sequência alfabética, chamando y, z,k aos logaritmos correspndentes

(16)^y = \sqrt[3]{8}  \\  \\ (2^4)^y=(2^3)^ \frac{1}{3}  \\  \\ 4y=1 \\  \\ y= \frac{1}{4}  \\  \\  \\ 4^z= 2^{ \frac{1}{2} }   \\  \\ (2^2)^z= 2^{ \frac{1}{2} }  \\  \\ 2z= \frac{1}{2}  \\  \\ z= \frac{1}{4}  \\  \\  \\  ( \frac{7}{3}) ^{k} = \frac{9}{49}  \\   \\ (\frac{7}{3})^k=( \frac{3}{7})^2 \\  \\ ( \frac{7}{3})^k   = (\frac{7}{3}) ^{-2}   \\  \\ k=-2 \\  \\  \\

JoãoOliveirahh: Muito Obrigado!!!
Respondido por Makaveli1996
1

Oie, Td Bom?!

a)

 =  log_{16}( \sqrt[3]{8} )

 =  log_{2 {}^{4} }( \sqrt[3]{2 {}^{3} } )

 =  log_{2 {}^{4} }(2)

 =  \frac{1}{4}  \: . \:  log_{2}(2)

 =  \frac{1}{4}  \: . \: 1

 =  \frac{1}{4}

b)

  = log_{4}( \sqrt{2} )

 =  log_{2 {}^{2} }(2 {}^{ \frac{1}{2} } )

 =  \frac{ \frac{1}{2} }{2}  \: . \:  log_{2}(2)

 =  \frac{ \frac{1}{2} }{2}  \: . \: 1

 =  \frac{ \frac{1}{2} }{2}

  = \frac{1}{2}  \div 2

 =  \frac{1}{2}  \: . \:  \frac{1}{2}

 =  \frac{1}{4}

c)

 =  log_{ \frac{7}{3} }( \frac{9}{49} )

 =  log_{ \frac{7}{3} }(( \frac{3}{7}) {}^{2}  )

 =  log_{ \frac{7}{3} }((( \frac{3}{7} ) {}^{1}) {}^{2}  )

 =  log_{ \frac{7}{3} }((( \frac{7}{3} ) {}^{ - 1} ) {}^{2} )

 =  log_{ \frac{7}{3} }(( \frac{7}{3} ) {}^{ - 2} )

 =  - 2 log_{ \frac{7}{3} }( \frac{7}{3} )

 =  - 2 \: . \: 1

 =  - 2

d)

 =  log_{1,25}(0,64)

 =  log_{ \frac{5}{4} }( \frac{16}{25} )

 =  log_{ \frac{5}{4} }(( \frac{4}{5} ) {}^{2} )

 =  log_{ \frac{5}{4} }((( \frac{4}{5}) {}^{1}) {}^{2}   )

 =  log_{ \frac{5}{4} }(( \frac{5}{4}) {}^{ - 1}) {}^{2}   )

 =  log_{ \frac{5}{4} }(( \frac{5}{4}) {}^{ - 2}  )

 =  - 2 log_{ \frac{5}{4} }( \frac{5}{4} )

 =  - 2 \: . \: 1

 =  - 2

Att. Makaveli1996

Perguntas interessantes