Calcule os ângulos de um trapézio inscrito num semicírculo cujas bases são os lados do triângulo e do hexágono regular inscritos nesse semicírculo.
Soluções para a tarefa
Respondido por
2
Fazendo uma circunferencia, basta dividi-la em um semicirculo e "inscrever" o trapezio. A base maior do trapezio sera o diametro da circunferência.
Desenhando um hexagono inscrito em toda a circunferência e dividi-lo em triangulos voce vai perceber que no semicirculo em que esta contido o trapezio formam 3 triangulos equilateros, logo:
a maior base do trapezio forma 60° com o lado do triangulo em ambos vertices de cima, e a menor base forma 120° com os lados diagonais do trapezio em ambos vertices de baixo.
2 angulos de 60°
2 angulos de 120°
Para provar que esta correto poderiamos identificar a soma desses angulos
Como o trapezio é um poligono de 4 lados, a soma deve resultar em 360°
2.60° + 2.120° = 360°
Espero ter ajudado!!
Desenhando um hexagono inscrito em toda a circunferência e dividi-lo em triangulos voce vai perceber que no semicirculo em que esta contido o trapezio formam 3 triangulos equilateros, logo:
a maior base do trapezio forma 60° com o lado do triangulo em ambos vertices de cima, e a menor base forma 120° com os lados diagonais do trapezio em ambos vertices de baixo.
2 angulos de 60°
2 angulos de 120°
Para provar que esta correto poderiamos identificar a soma desses angulos
Como o trapezio é um poligono de 4 lados, a soma deve resultar em 360°
2.60° + 2.120° = 360°
Espero ter ajudado!!
Perguntas interessantes
Inglês,
10 meses atrás
Ed. Física,
10 meses atrás
Matemática,
10 meses atrás
Matemática,
1 ano atrás
Biologia,
1 ano atrás
Saúde,
1 ano atrás
Geografia,
1 ano atrás