Matemática, perguntado por gustavogomes01, 11 meses atrás

Calcule o volume do sólido:
1)Abaixo da superfície z=xy e acima do triângulo com vértices (1,1), (4,1) e (1,2).


gustavogomes01: O gabarito é 31/8, queria saber como chegar nisso.

Soluções para a tarefa

Respondido por newtoneinsteintesla
1

os pontos dados acima descrevem um triângulo retângulo.

aplicando na lei de formação dada

(1,1) => z=1

(4,1) => z=4

(1,2) => z=2

por integral tripla teríamos

 \mathsf{ \int _ {1}^{4}  \int _ {1}^{2}  \int _ {1}^{4} xy.dzdydx} \\

coloquei as integrais na ordem de x,y,z.

resolvendo a primeira teria

z]{1}^{4}=3

então teríamos

 \mathsf{ \int_  {1}^{4}x  \int_ {1}^{2} 3ydydx} \\

resolvendo em y

3.y²/2]{1}^{2}=9/2

por fim

 \mathsf{ \int _ {1}^{4}  \frac{9x}{2} dx } \\

9/2.x²/2]{1}^{4}=9/2.15/2=135/4

135/4 u.v. //.


gustavogomes01: O gabarito é 38/8
gustavogomes01: 31/8*
gustavogomes01: Peguei o exercícios no livro de calculo 2, james stewart 15.2
gustavogomes01: Ele ainda n tinha definido integral tripla até então
gustavogomes01: Apenas a dupla
Perguntas interessantes