Matemática, perguntado por luuhgh10p687nz, 1 ano atrás

Calcule o valor numérico da expressão algébrica:

X = -b - √b² - 4ac
------------
2
Para a = 1, b = -9 e c = 20
Nota: A raiz quadrada de "b²" vai até "4ac"

Soluções para a tarefa

Respondido por thiagohenrimart
16
É a famosa fórmula de bháskara.

Sabemos que a = 1 ; b = -9 ; c = 20

Se Δ = b² - 4.a.c ⇒ Δ = (-9)² - 4.1.20 ⇒ Δ = 81 - 80 ⇒ Δ = 1

Retomando a fórmula de bhaskara de pois de descobrir o delta:

 \frac{ -b +- √ [tex] \frac{(-b) -+  \sqrt{b^{2} - 4.a.c } }{2} }{2} [/tex]

 \frac{(-9) - \sqrt{1} }{2}

 \frac{-10}{2}

⇒ X = -5 

Porém, se por algum motivo for positivo antes do √Δ então: 

 ⇒ \frac{ -b +- √ [tex] \frac{(-b) + \sqrt{b^{2} - 4.a.c } }{2}  }{2} [/tex]

então ⇒  \frac{(-9) + \sqrt{1} }{2}

 \frac{-8}{2}

⇒ x = -4

Abraços e bons estudos.

luuhgh10p687nz: Obrigada! ❤
thiagohenrimart: Não foi nada! :)
Perguntas interessantes