Calcule o valor dos seguintes logaritmos:a) Log 16 64 f) log 49 ∛7 g)log ( 9 ( 3√3)b) log 5 ( 0,000064)c) log( 5√2) 128 h)log 2 0,25d) log2 ( 8√64)e) log625√5
Soluções para a tarefa
a) Log 16 64 = x ==> 16^x = 64 ==> 4^x = 4^3 ==> x = 3
=====================================================
f) log 49 ∛7 = y ==> 49^y =∛7 ==> (7^2)^y = 7^1/3 ==> 2y = 1/3==>y = 1/6
===========================================================
g)log ( 9 ( 3√3) = 9^w = 3V3 ==> (3^2)^w = 3.3^1/13 ==> 3^2w = 3^4/3
==>2w = 4/3 ==> w = 4/6
========================================================
b) log 5 ( 0,000064) = 5^t = 2^6 .10^-6 bases diferentes
==========================================================
c) log( 5√2) 128 = e ==> (5.2^1/2)^e = 2^7 bases diferentes
==========================================================
h)log 2 0,25 = t ==> 2^t = (2^-1)^4 ==> 2^t = 2^-4 ==> t = - 4
===================================================
d) log2 ( 8√64) = s ==> 2^s = 2^3.(2^6)^1/2 ==> 2^s = 2^3.2^6/2
2^s = 2^3.2^3 ==> 2^s = 2^(3+3) ==> s = 3+3 ==> s = 6
======================================================
e) log625√5 = (5^1/2)^x = 5^4 ==> 5^x/2 = 5^4 ==> x /2 = 4 ==>x = 8