Matemática, perguntado por amandawinterr1289, 1 ano atrás

calcule o valor dos angulos complementares A e B, sendo que, A=3x+40 e B=2 X+40

Soluções para a tarefa

Respondido por ALCACARENHO
0
A + B = 90° (complementares)
3x+40 + 2x+40 = 90
5x +80 = 90
5x = 90 -80
5x = 10
x = 10/5
x = 2

A = 3x + 40 = 3.2 + 40 = 6+40 = 46
B = 2x + 40 = 2. 2 + 40 = 4 + 40 = 44
Respondido por 56242
0
Olá, bom dia! ☺

Bem, vamos lá ...

Prezado amigo (a), com base no enunciado acima, podemos compreender que:

\displaystyle \mathsf {A + B = 90^o}

\displaystyle \mathsf {3x+40 + 2x+40 = 90}

\displaystyle \mathsf {5x +80 = 90}

\displaystyle \mathsf {5x = 90 -80}

\displaystyle \mathsf {5x = 10}

\displaystyle \mathsf {x =\dfrac {10}{5}}

\displaystyle \mathbf {x = 2}

Valor do ângulo "A":

\displaystyle \mathsf {A = 3x + 40}

\displaystyle \mathsf {A=3\cdot 2 + 40}

\displaystyle \mathsf {A=6+40}

\displaystyle \mathbf {A=46}

Valor do ângulo "B":

\displaystyle \mathsf {B = 2x + 40}

\displaystyle \mathsf {B=2\cdot 2 + 40}

\displaystyle \mathsf {B=4 + 40}

\displaystyle \mathbf {B=44}
Perguntas interessantes