Matemática, perguntado por matheuzinhorodrigues, 11 meses atrás

calcule o valor do logaritmo log625 √5

Soluções para a tarefa

Respondido por Raiher
13
 log_{625}( \sqrt{5} ) = \frac{ log_{5}( \sqrt{5} ) }{ log_{5}(625) } = \frac{ log_{5}( {5}^{ \frac{1}{2} } ) }{ log_{5}( {5}^{4} ) } = \\ = \frac{ \frac{1}{2} log_{5}(5) }{4 log_{5}(5) } = \frac{ \frac{1}{2} }{4} = \frac{1}{2} \times \frac{1}{4} = \\ \boxed{= \frac{1}{8} = 0.125}
Respondido por MaHePire
6

Logaritmo:

 log_{625}( \sqrt{5} )  =  \color{red} {x} \\  {625}^{x}  =  \sqrt{5}  \\  {\diagup\!\!\!\!5}^{4x}  =  {\diagup\!\!\!\!5}^{ \frac{1}{2} }  \\ 4x =  \frac{1}{2}  \\ x =  \frac{1}{2}  \div 4 \\ x =  \frac{1}{2}  \times  \frac{1}{4}  \\   \boxed{ \bf{x =  \frac{1}{8} } }

Perguntas interessantes