Calcule o valor do logaritmo.
log ³√16 na base 1\2
Soluções para a tarefa
Respondido por
0
Olá !
Vamos aplicar algumas regrinhas de log e de expoentes ...
Sabemos que:
![\sqrt[3]{16} = \sqrt[3]{2^{4}} =\boxed{2^{ \frac{4}{3} }} \sqrt[3]{16} = \sqrt[3]{2^{4}} =\boxed{2^{ \frac{4}{3} }}](https://tex.z-dn.net/?f=+%5Csqrt%5B3%5D%7B16%7D+%3D+%5Csqrt%5B3%5D%7B2%5E%7B4%7D%7D+%3D%5Cboxed%7B2%5E%7B+%5Cfrac%7B4%7D%7B3%7D+%7D%7D)
Agora basta resolver ...
![log_{ \frac{1}{2} }\ \ \sqrt[3]{16} =x\\\\\\ log_{ \frac{1}{2} }\ \ 2^{ \frac{4}{3} }=x\\\\\\ ( \frac{1}{2} )^{x}=2^{ \frac{4}{3} }\\\\\\(2)^{-x}=(2)^{ \frac{4}{3} }\\\\\\ -x= \frac{4}{3} \\\\\\ \boxed{x=-\ \frac{4}{3} }\\\\\\\\\ Ent\~ao\ : log_{ \frac{1}{2} }\ \ \sqrt[3]{16} =x\\\\\\ log_{ \frac{1}{2} }\ \ 2^{ \frac{4}{3} }=x\\\\\\ ( \frac{1}{2} )^{x}=2^{ \frac{4}{3} }\\\\\\(2)^{-x}=(2)^{ \frac{4}{3} }\\\\\\ -x= \frac{4}{3} \\\\\\ \boxed{x=-\ \frac{4}{3} }\\\\\\\\\ Ent\~ao\ :](https://tex.z-dn.net/?f=log_%7B+%5Cfrac%7B1%7D%7B2%7D+%7D%5C+%5C++%5Csqrt%5B3%5D%7B16%7D+%3Dx%5C%5C%5C%5C%5C%5C+log_%7B+%5Cfrac%7B1%7D%7B2%7D+%7D%5C+%5C+2%5E%7B+%5Cfrac%7B4%7D%7B3%7D+%7D%3Dx%5C%5C%5C%5C%5C%5C+%28+%5Cfrac%7B1%7D%7B2%7D+%29%5E%7Bx%7D%3D2%5E%7B+%5Cfrac%7B4%7D%7B3%7D+%7D%5C%5C%5C%5C%5C%5C%282%29%5E%7B-x%7D%3D%282%29%5E%7B+%5Cfrac%7B4%7D%7B3%7D+%7D%5C%5C%5C%5C%5C%5C+-x%3D+%5Cfrac%7B4%7D%7B3%7D+%5C%5C%5C%5C%5C%5C+%5Cboxed%7Bx%3D-%5C++%5Cfrac%7B4%7D%7B3%7D+%7D%5C%5C%5C%5C%5C%5C%5C%5C%5C+Ent%5C%7Eao%5C+%3A)
![\boxed{\boxed{log_{ \frac{1}{2} }\ \ \sqrt[3]{16} \ =-\ \frac{4}{3} }}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ok \boxed{\boxed{log_{ \frac{1}{2} }\ \ \sqrt[3]{16} \ =-\ \frac{4}{3} }}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ok](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cboxed%7Blog_%7B+%5Cfrac%7B1%7D%7B2%7D+%7D%5C+%5C++%5Csqrt%5B3%5D%7B16%7D+%5C+%3D-%5C++%5Cfrac%7B4%7D%7B3%7D+%7D%7D%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+ok)
Vamos aplicar algumas regrinhas de log e de expoentes ...
Sabemos que:
Agora basta resolver ...
Perguntas interessantes
Inglês,
11 meses atrás
Ed. Física,
11 meses atrás
Matemática,
11 meses atrás
Informática,
1 ano atrás
Matemática,
1 ano atrás
Biologia,
1 ano atrás
Direito,
1 ano atrás