Calcule o valor do logaritmo dado:Log:² 1024.
Soluções para a tarefa
Respondido por
1
Seja
![log_{2}(1024) = x log_{2}(1024) = x](https://tex.z-dn.net/?f=+log_%7B2%7D%281024%29++%3D+x)
Então,
![{2}^{x} = 1024 \\ {2}^{x} = {2}^{10} \\ x = 10 {2}^{x} = 1024 \\ {2}^{x} = {2}^{10} \\ x = 10](https://tex.z-dn.net/?f=+%7B2%7D%5E%7Bx%7D++%3D+1024+%5C%5C++%7B2%7D%5E%7Bx%7D++%3D++%7B2%7D%5E%7B10%7D++%5C%5C+x+%3D+10)
Logo,
![log_{2}(1024) = 10 log_{2}(1024) = 10](https://tex.z-dn.net/?f=+log_%7B2%7D%281024%29++%3D+10)
Então,
Logo,
Respondido por
0
Pela definição de logaritmo, temos:
![log_{2}(1024) = x \\ \\ 1024 = {2}^{x} \\ {2}^{10} = {2}^{x} \\ \\ x = 10 log_{2}(1024) = x \\ \\ 1024 = {2}^{x} \\ {2}^{10} = {2}^{x} \\ \\ x = 10](https://tex.z-dn.net/?f=log_%7B2%7D%281024%29++%3D+x+%5C%5C++%5C%5C+1024+%3D++%7B2%7D%5E%7Bx%7D++%5C%5C++%7B2%7D%5E%7B10%7D++%3D++%7B2%7D%5E%7Bx%7D++%5C%5C++%5C%5C+x+%3D+10)
Perguntas interessantes