calcule o valor de x nos logaritimos:
a) log x 8 = 3 b) log 2 x = 5 c) log x = 2 d) log 9 x = 4
Soluções para a tarefa
1 - quando a base do sistema de logaritmos é igual a 10 , usamos a expressão logaritmo decimal e na representação simbólica escrevemos somente logN ao invés de log10N. Assim é que quando escrevemos logN = x , devemos concluir pelo que foi exposto, que 10x = N.
Existe também um sistema de logaritmos chamado neperiano (em homenagem a John Napier - matemático escocês do século XVI, inventor dos logaritmos), cuja base é o número irracional
e = 2,7183... e indicamos este logaritmo pelo símbolo ln. Assim,
logeM = ln M. Este sistema de logaritmos, também conhecido como sistema de logaritmos naturais, tem grande aplicação no estudo de diversos fenômenos da natureza.
Exemplos:
a) log100 = 2 porque 102 = 100.
b) log1000 = 3 porque 103 = 1000.
c) log2 = 0,3010 porque 100,3010 = 2.
d) log3 = 0,4771 porque 100,4771 = 3.
e) ln e = 1 porque e1 = e = 2,7183...
f) ln 7 = loge7
2 - Os logaritmos decimais (base 10) normalmente são números decimais onde a parte inteira é denominada característica e a parte decimal é denominada mantissa .
Assim por exemplo, sendo log20 = 1,3010, 1 é a característica e 0,3010 a mantissa.
As mantissas dos logaritmos decimais são tabeladas.
Consultando a tábua de logaritmo (qualquer livro de Matemática traz) , podemos escrever por exemplo que log45 = 1,6532. As tábuas de logaritmos decimais foram desenvolvidas por Henry Briggs, matemático inglês do século XVI. Observe que do fato de termos log45 = 1,6532 , podemos concluir pela definição de logaritmo que
101,6532 = 45.
3) Da definição de logaritmo, infere-se (conclui-se) que somente os números reais positivos possuem logaritmo. Assim, não têm sentido as expressões log3(-9) , log20 , etc.
4) É fácil demonstrar as seguintes propriedades imediatas dos logaritmos, todas decorrentes da definição: