Calcule o valor de x nas equações exponenciais
Anexos:
Joaopedro742:
Rápido
Soluções para a tarefa
Respondido por
0
Bom dia
a)
3^(2x - 4) = 3^(1/3)
2x - 4 = 1/3
6x - 12 = 1
6x = 13
x = 13/6¨
b)
(1/2)^x = 4^(1/3)
2^-x = 2^2/3
-x = 2/3
x = -2/3
c)
(3/2)^(x + 1) = (3/2)^(2 + 4x)
x + 1 = 2 + 4x
3x = -1
x = -1/3
d)
16^(2x) = 8^(x + 2)
2^(8x) = 2^(3x + 6)
8x = 3x + 6
5x = 6
x = 6/5
e)
(1/3)^(-x + 2) = 9^(1/4)
(1/3)^(-x + 2) = 3^(1/2)
-x + 2 = 1/2
x = 2 - 1/2 = 3/2
f)
10^(1 - x) = 1/10 = 10^-1
1 - x = -1
x = 2
g)
(2/5)^(x - 1) = 125/8
(5/2)^(1 - x) = (5/2)^3
1 - x = 3
x = 2
h)
5^(2 - x) = 5^-3
2 - x = -3
x = 5
a)
3^(2x - 4) = 3^(1/3)
2x - 4 = 1/3
6x - 12 = 1
6x = 13
x = 13/6¨
b)
(1/2)^x = 4^(1/3)
2^-x = 2^2/3
-x = 2/3
x = -2/3
c)
(3/2)^(x + 1) = (3/2)^(2 + 4x)
x + 1 = 2 + 4x
3x = -1
x = -1/3
d)
16^(2x) = 8^(x + 2)
2^(8x) = 2^(3x + 6)
8x = 3x + 6
5x = 6
x = 6/5
e)
(1/3)^(-x + 2) = 9^(1/4)
(1/3)^(-x + 2) = 3^(1/2)
-x + 2 = 1/2
x = 2 - 1/2 = 3/2
f)
10^(1 - x) = 1/10 = 10^-1
1 - x = -1
x = 2
g)
(2/5)^(x - 1) = 125/8
(5/2)^(1 - x) = (5/2)^3
1 - x = 3
x = 2
h)
5^(2 - x) = 5^-3
2 - x = -3
x = 5
Perguntas interessantes