Calcule o valor de n em: (n+3)! / (n+1) - (n+2)! / n! = 20
Soluções para a tarefa
Respondido por
0
(n + 3)! / (n + 1)! - (n + 2)! / n! = 20
(n + 3)(n + 2)(n + 1)!/(n + 1)! - (n + 2)(n + 1)n!/n! =20
(n + 3)(n + 2) - (n + 2)(n + 1) = 20
pondo em evidencia (n + 2)
(n + 2)(n + 3 - (n + 1)) = 20
(n + 2)(n + 3 - n - 1) = 20
(n + 2).2 = 20
2n + 4 = 20
2n = 20 - 4
2n = 16
n = 16/2
n = 8
R.: n = 8
(n + 3)(n + 2)(n + 1)!/(n + 1)! - (n + 2)(n + 1)n!/n! =20
(n + 3)(n + 2) - (n + 2)(n + 1) = 20
pondo em evidencia (n + 2)
(n + 2)(n + 3 - (n + 1)) = 20
(n + 2)(n + 3 - n - 1) = 20
(n + 2).2 = 20
2n + 4 = 20
2n = 20 - 4
2n = 16
n = 16/2
n = 8
R.: n = 8
Perguntas interessantes