Matemática, perguntado por mv958305, 8 meses atrás

Calcule o valor de cos 3TT/5.​


luandinizpbczbv: esse TT é pi?

Soluções para a tarefa

Respondido por niltonjunior20oss764
1

\text{Seja}\ \alpha=\dfrac{3\pi}{5}

\Longrightarrow\beta=\dfrac{2\pi}{5}\ \mathrm{\acute{e}\ suplementar\ de}\ \alpha\Longrightarrow \cos{\alpha}=-\cos{\beta}

\Longrightarrow \phi=\dfrac{\pi}{10}\ \mathrm{\acute{e}\ complementar\ de}\ \beta\Longrightarrow \cos{\alpha}=-\cos{\beta}=-\sin{\phi}

\Longrightarrow\cos{\dfrac{3\pi}{5}}=-\cos{\dfrac{2\pi}{5}}=\boxed{-\sin{\dfrac{\pi}{10}}}

\text{Seja}\ \phi=\dfrac{\pi}{10}\Longrightarrow 5\phi=\dfrac{\pi}{2}\Longrightarrow 2\phi=\dfrac{\pi}{2}-3\phi

\Longrightarrow\sin{2\phi}=\sin{\bigg(\dfrac{\pi}{2}-3\phi\bigg)}\Longrightarrow\sin{2\phi}=\cos{3\phi}

\Longrightarrow2\sin{\phi}\cos{\phi}=4\cos^3{\phi}-3\cos{\phi}\Longrightarrow2\sin{\phi}=4\cos^2{\phi}-3

\Longrightarrow2\sin{\phi}=4\left(1-\sin^2{\phi}\right)-3\Longrightarrow\boxed{4\sin^2{\phi}+2\sin{\phi}-1=0}

\Longrightarrow\sin{\phi}=\dfrac{-2\pm\sqrt{2^2-4(4)(-1)}}{2(4)}\Longrightarrow\sin{\phi}=\dfrac{-1\pm\sqrt{5}}{4}

\Longrightarrow\sin{\phi}=\dfrac{-1+\sqrt{5}}{4}\ \because\ \dfrac{\pi}{2}>\phi>0

\cos{\alpha}=-\sin{\phi}\ \therefore\ \boxed{\cos{\dfrac{3\pi}{5}}=\dfrac{1-\sqrt{5}}{4}}

Perguntas interessantes