calcule o valor das raízes x' e x'' da função quadrática f(x)1x²-9x+8
luantricolor9:
bora pessoal me ajuda pelo amo de deus !
Soluções para a tarefa
Respondido por
1
f(x)=x²-9x+8
x²-9x+8=0
a= 1 b= -9 c-8
Δ= b²-4ac
Δ= (-9)²-4·1·8
Δ=81-32
Δ=49
x= -b+/-√Δ/2a
x= - (-9) +/-√49/2·1
x= 9+/-7/2
x'= 8
x''= 1
S:[1,8]
x²-9x+8=0
a= 1 b= -9 c-8
Δ= b²-4ac
Δ= (-9)²-4·1·8
Δ=81-32
Δ=49
x= -b+/-√Δ/2a
x= - (-9) +/-√49/2·1
x= 9+/-7/2
x'= 8
x''= 1
S:[1,8]
Respondido por
0
f(x)= 1x²-9x+8
![\boxed{A = 1 , B = -9 , C = 8} \boxed{A = 1 , B = -9 , C = 8}](https://tex.z-dn.net/?f=%5Cboxed%7BA+%3D+1+%2C+B+%3D+-9+%2C+C+%3D+8%7D)
Δ = b² -4ac
Δ = (-9) ² -4.1.8
Δ = 81 - 32
Δ = 49
x = -b ± √Δ
2a
x = -(-9) ± √49
2.1
x = 9 ± 7
2
![\boxed{x' =\frac{9+7}{2} = \frac{16}{2} = 8} \boxed{x' =\frac{9+7}{2} = \frac{16}{2} = 8}](https://tex.z-dn.net/?f=%5Cboxed%7Bx%27+%3D%5Cfrac%7B9%2B7%7D%7B2%7D+%3D++%5Cfrac%7B16%7D%7B2%7D+%3D+8%7D+)
![\boxed{x''= \frac{9-7}{2} = \frac{2}{2} = 1} \boxed{x''= \frac{9-7}{2} = \frac{2}{2} = 1}](https://tex.z-dn.net/?f=%5Cboxed%7Bx%27%27%3D+%5Cfrac%7B9-7%7D%7B2%7D+%3D++%5Cfrac%7B2%7D%7B2%7D+%3D+1%7D)
Δ = b² -4ac
Δ = (-9) ² -4.1.8
Δ = 81 - 32
Δ = 49
x = -b ± √Δ
2a
x = -(-9) ± √49
2.1
x = 9 ± 7
2
Perguntas interessantes