Matemática, perguntado por mourasabrina1721, 11 meses atrás

Calcule o valor das expressões a seguir.

Anexos:

Soluções para a tarefa

Respondido por angelo038
7
4)
a)
 log_{ \sqrt[3]{100} } \sqrt{0.1}   = x

( \sqrt[3]{100})^{x}  =  \sqrt{0.1 }  \\ ( \sqrt[3]{ {10}^{2}   } )^{x}  =  \sqrt{ \frac{1}{10} }

( {10}^{ \frac{2}{3} } ) ^{x}  =  \sqrt{ {10}^{ - 1} }  \\  {10}^{ \frac{2x}{3} }  =  {10}^{  - \frac{  1}{2} }  \\  \frac{2x}{3} =  -  \frac{1}{2}   \\ 4x =  - 3 \\ x =   - \frac{3}{4}

então

 log_{ \sqrt[3]{100} } \sqrt{0.1}  =  - \frac{3}{4}

agora

 log_{ \sqrt[3]{0.5 } } \sqrt{8}   = x \\  (\sqrt[3]{0.5}) ^{x}   =  \sqrt{8}  \\ ( \sqrt[3]{ \frac{1}{2}  } ) ^{x}  =  \sqrt{ {2}^{3} }  \\ ( \sqrt[3]{ {2}^{ - 1} } ) ^{x}  =  {2}^{ \frac{3}{2} }  \\ ( {2}^{ -  \frac{1}{3} } ) ^{x}  =  {2}^{ \frac{3}{2} }  \\  {2}^{ -  \frac{x}{3} }  =  {2}^{ \frac{3}{2} }  \\  -  \frac{x}{3}  =  \frac{3}{2}  \\  - 2x = 9 \\ x =  -  \frac{9}{2}

então

 log_{ \sqrt[3]{0.5} }\sqrt{8}  =  -  \frac{9}{2}

(-3/4)+(-9/2)

 -  \frac{3}{4}  -  \frac{9}{2}  =  \frac{ - 3 - 18}{4}  =  -  \frac{21}{4}

a) -21/4

b) faz do mesmo jeito da a)

 log_{0.1}0.01 = x \\ 0.1 ^{x}   = 0.01
de cara já sabemos de 0,1²=0,01

então

 log_{0.1}0.01  = 2

log_{ \sqrt{2} }0.25  = x \\  (\sqrt{2} ) ^{x}  = 0.25 \\  ({2}^{ \frac{1}{2} } ) ^{x}  =  \frac{1}{4}  \\  {2}^{ \frac{x}{2} }  =  {2}^{ - 2}  \\  \frac{x}{2}  =  - 2 \\ x =  - 2 \times 2 \\ x =  - 4

então

3 log_{ \sqrt{2} }0.25  =  -  {4}  \times 3 \\ 3 log_{ \sqrt{2} }0.25 =  - 12

 log_{25}0.008 = x \\  {25}^{x}   = 0.008 \\ ( \frac{100}{4} ) ^{x}  =  \frac{8}{1000}  \\ (  { \frac{10}{2} }^{2} )^{x}  =  { \frac{2}{10} }^{3}  \\  \frac{10}{2} ^{2x}  =  \frac{10}{2} ^{ - 3}   \\ 2x =  - 3 \\ x =  -  \frac{3}{2}

então

 log_{25}0.008 =  -  \frac{3}{2}  \\  \frac{1}{2}  log_{25}0.008 =  -  \frac{3}{2}  \times  \frac{1}{2}  \\  \frac{1}{2}  log_{25}0.008 =  -  \frac{3}{4}

(2)-(-12)-(-3/4)

2 + 12 +  \frac{3}{4}  =  \frac{8 + 48 + 3}{4}  =  \frac{59}{4}

b)59/4

5)
 log_{x}9 =  - 2 \\  {x}^{ - 2}  = 9 \\  \frac{1}{x} ^{2}   = 9 \\  \frac{1}{ {x}^{2} }  = 9 \\ 1 = 9 {x}^{2} \\  \frac{1}{9}  =  {x}^{2}  \\ ( \frac{1}{3} ) ^{2}  =  {x}^{2} \\ x =  \frac{1}{3}

x=1/3

mourasabrina1721: Obrigada ❤
Perguntas interessantes