Matemática, perguntado por Usuário anônimo, 8 meses atrás

Calcule o valor da integral indefinida usando o método para decompor em frações parciais.
teorema a ser usado: ∫\frac{P(x)}{(x-\alpha)(x-\beta ) }= A In |x-\alpha |+BIn|x-\beta |+k

Anexos:

Soluções para a tarefa

Respondido por CyberKirito
6

\large\boxed{\begin{array}{l}\underline{\rm Integrac_{\!\!,}\tilde ao~de~func_{\!\!,}\tilde oes~racionais}\\\underline{\rm por~frac_{\!\!,}\tilde oes~parciais}\\\sf\dfrac{2x+1}{x^2-1}=\dfrac{2x+1}{(x-1)(x+1)}=\dfrac{A}{x-1}+\dfrac{B}{x+1}\\\sf A=\dfrac{2x+1}{x+1}\bigg |_{x=1}=\dfrac{2\cdot1+1}{1+1}=\dfrac{3}{2}\\\\\sf B=\dfrac{2x+1}{x-1}\bigg|_{x=-1}=\dfrac{2\cdot(-1)+1}{-1-1}=\dfrac{1}{2}\end{array}}

\large\boxed{\begin{array}{l}\displaystyle\sf\int\dfrac{2x+1}{x^2-1}~dx=\dfrac{3}{2}\ell n|x-1|+\dfrac{1}{2}\ell n|x+1|+k\\\displaystyle\sf\int\dfrac{2x+1}{x^2-1}~dx=\ell n\bigg|(x-1)^{\frac{3}{2}}\cdot(x+1)^{\frac{1}{2}}\bigg|+k\end{array}}

Respondido por edivaldocardoso
5

Explicação passo-a-passo:

 \Large \int \frac{2x + 1}{ {x}^{2}  - 1} dx \\  \\  \frac{2x + 1}{(x - 1)(x + 1)}  =  \frac{A}{x - 1}  +  \frac{B}{x + 1}  \\  \\  \frac{2x + 1 = (x + 1)A + (x - 1)B}{(x - 1)(x + 1)  \: }  \\  \\ 2x + 1 =Ax + A +  Bx - B \\  \\ 2x + 1 = Ax + Bx + A- B \\  \\ 2x + 1 = (A+ B)x + (A- B) \\  \\  \left\{ \:{{A+ B = 2} \atop{A - B = 1}}  \right. \\  \\ 2A = 3 \\  \\ \Large \boxed{ A =   \frac{2}{3} } \\  \\ A+ B = 2 \\  \\  \frac{2}{3}  + B = 2 \\  \\ B =  - \frac{3}{2}   + 2   \\  \\ B = \frac{ - 1 \times 3 + 2 \times 2}{2}  \\  \\ B = \frac{ - 3 + 4}{2}  \\  \\   \Large\boxed{B = \frac{1}{2} } \\  \\  \frac{A}{x - 1}  +  \frac{B}{x + 1}   \\  \\  \frac{ \frac{3}{2} }{x - 1}  +  \frac{ \frac{1}{2} }{x + 1}  \\  \\  \frac{3}{2}  \times  \frac{1}{x - 1}  +  \frac{1}{2}  \times  \frac{1}{x + 1}  \\  \\  \Large  \int\frac{3}{2(x - 1)}  +   \frac{1}{2(x  + 1)} dx \\  \\\Large \int\frac{3}{2(x - 1)} dx + \int\frac{1}{2(x  + 1)} dx \\  \\\Large\boxed{  \green{\frac{3}{2} ln |x - 1|  +  \frac{1}{2} ln |x + 1|  + k, \: k \in \mathbb{R}}}

\Large \boxed{\underline{\bf \blue{Bons\: Estudos!}}}\\ \\\Large \boxed{\underline{\bf 28/05/2021}}

Perguntas interessantes