Calcule o valor da expressão
A = log4 128 – log100 0,1 + log2 1/16
Soluções para a tarefa
Respondido por
2
Resposta:
P1) O logaritmo da unidade em qualquer base é nulo, ou seja:
logb1 = 0 porque b0 = 1.
P2) O logaritmo da base é sempre igual a 1, ou seja: logbb = 1 , porque b1 = b.
P3) logbbk = k , porque bk = bk .
P4) Se logbM = logbN então podemos concluir que M = N. Esta propriedade é muito utilizada na solução de exercícios envolvendo equações onde aparecem logaritmos (equações logarítmicas).
P5) blogbM = M ou seja: b elevado ao logaritmo de M na base b é igual a M.
3 - PROPRIEDADES OPERATÓRIAS DOS LOGARITMOS
P1 - LOGARITMO DE UM PRODUTO
Perguntas interessantes