Calcule o quadrado e o cubo de um binômio.
Soluções para a tarefa
Resposta:
Explicação passo-a-passo:
2.A) (4 + 1)²
⠀5²=25
B) (2 - y)²
2² - 4y + y²=
4 - 4y + y²
C) (3x + 2y²)³
(3x)³ + 3(3x)² × (2y²) + 3(3x) × (2x²)² + (2x²)³=
27x³ + 3 × 9x² × (2y²) + 9x × 4y⁴ + 8y⁶
⠀27x³ + 54x²y² + 36xy⁴ + 8y⁶
D) (4x² + 4w³)³=
(4x²)³ + 3(4x²)² × (4w³) + 3(4x²) × (4w³)² + (4w³)³
64x⁶ + 3 × 16x⁴ × 4w³ + 12x² × 16w⁶ + 64w⁹
⠀64x⁶ + 192x⁴w³ + 192x²w⁶ + 64w⁹
3.A) (_ + 3)² = a² + 6a + _
(a + 3)² = a² + 6a + 9
B) (2a + _)³ = 8a³ + _ + 54ab² + 27b³
(2a + 3b) = 8a³ + 36a²b + 54ab² + 27b³
C) (3a² - 2b)² = _ - 12a²b + _
⠀(3a² - 2b)² = 9a⁴ - 12a²b + 4b²
Resposta:
2.A) (4 + 1)²
⠀5²=25
B) (2 - y)²
2² - 4y + y²=
4 - 4y + y²
C) (3x + 2y²)³
(3x)³ + 3(3x)² × (2y²) + 3(3x) × (2x²)² + (2x²)³=
27x³ + 3 × 9x² × (2y²) + 9x × 4y⁴ + 8y⁶
⠀27x³ + 54x²y² + 36xy⁴ + 8y⁶
D) (4x² + 4w³)³=
(4x²)³ + 3(4x²)² × (4w³) + 3(4x²) × (4w³)² + (4w³)³
64x⁶ + 3 × 16x⁴ × 4w³ + 12x² × 16w⁶ + 64w⁹
⠀64x⁶ + 192x⁴w³ + 192x²w⁶ + 64w⁹
3.A) (_ + 3)² = a² + 6a + _
(a + 3)² = a² + 6a + 9
B) (2a + _)³ = 8a³ + _ + 54ab² + 27b³
(2a + 3b) = 8a³ + 36a²b + 54ab² + 27b³
C) (3a² - 2b)² = _ - 12a²b + _
⠀(3a² - 2b)² = 9a⁴ - 12a²b + 4b²
Explicação passo-a-passo: