Calcule o perímetro do triângulo cujos vértices são os pontos médios dos lados do triângulo ABC, sendo :A(3, 1, 2), B(5,−2, 1) e C(0, 3,−3).
Soluções para a tarefa
Respondido por
10
Como o perímetro é a soma de todos os lados, temos que calcular o tamanho dos lados. Como temos as coordenadas dos vértices, então podemos usar a fórmula que calcula a distância entre dois pontos para cada par de pontos dado.
Fórmula da distância entre dois pontos, (
e
):
![d = \sqrt{(x_{2} - x_{1})^2 + (y_{2} - y_{1})^2 + (z_{2} - z_{1})^2} d = \sqrt{(x_{2} - x_{1})^2 + (y_{2} - y_{1})^2 + (z_{2} - z_{1})^2}](https://tex.z-dn.net/?f=d+%3D++%5Csqrt%7B%28x_%7B2%7D+-+x_%7B1%7D%29%5E2+%2B+%28y_%7B2%7D+-+y_%7B1%7D%29%5E2+%2B+%28z_%7B2%7D+-+z_%7B1%7D%29%5E2%7D+)
Para AB, teremos:
A(3, 1, 2) B(5, -2, 1)
![d_{AB} = \sqrt{(x_{2} - x_{1})^2 + (y_{2} - y_{1})^2 + (z_{2} - z_{1})^2} d_{AB} = \sqrt{(x_{2} - x_{1})^2 + (y_{2} - y_{1})^2 + (z_{2} - z_{1})^2}](https://tex.z-dn.net/?f=d_%7BAB%7D+%3D+%5Csqrt%7B%28x_%7B2%7D+-+x_%7B1%7D%29%5E2+%2B+%28y_%7B2%7D+-+y_%7B1%7D%29%5E2+%2B+%28z_%7B2%7D+-+z_%7B1%7D%29%5E2%7D+)
![d_{AB} = \sqrt{(5 - 3)^2 + (-2 - 1)^2 + (1 - 2)^2} d_{AB} = \sqrt{(5 - 3)^2 + (-2 - 1)^2 + (1 - 2)^2}](https://tex.z-dn.net/?f=d_%7BAB%7D+%3D+%5Csqrt%7B%285+-+3%29%5E2+%2B+%28-2+-+1%29%5E2+%2B+%281+-+2%29%5E2%7D+)
![d_{AB} = \sqrt{2^2 + (-3)^2 + (-1)^2} d_{AB} = \sqrt{2^2 + (-3)^2 + (-1)^2}](https://tex.z-dn.net/?f=d_%7BAB%7D+%3D+%5Csqrt%7B2%5E2+%2B+%28-3%29%5E2+%2B+%28-1%29%5E2%7D+)
![d_{AB} = \sqrt{4 + 9 + 1} d_{AB} = \sqrt{4 + 9 + 1}](https://tex.z-dn.net/?f=d_%7BAB%7D+%3D+%5Csqrt%7B4+%2B+9+%2B+1%7D+)
![d_{AB} = \sqrt{14} d_{AB} = \sqrt{14}](https://tex.z-dn.net/?f=d_%7BAB%7D+%3D+%5Csqrt%7B14%7D+)
Para BC, teremos:
B(5, -2, 1) C(0, 3, -3)
![d_{BC} = \sqrt{(x_{2} - x_{1})^2 + (y_{2} - y_{1})^2 + (z_{2} - z_{1})^2} d_{BC} = \sqrt{(x_{2} - x_{1})^2 + (y_{2} - y_{1})^2 + (z_{2} - z_{1})^2}](https://tex.z-dn.net/?f=d_%7BBC%7D+%3D+%5Csqrt%7B%28x_%7B2%7D+-+x_%7B1%7D%29%5E2+%2B+%28y_%7B2%7D+-+y_%7B1%7D%29%5E2+%2B+%28z_%7B2%7D+-+z_%7B1%7D%29%5E2%7D+)
![d_{BC} = \sqrt{(0 - 5)^2 + (3 - (-2))^2 + (-3 - 1)^2} d_{BC} = \sqrt{(0 - 5)^2 + (3 - (-2))^2 + (-3 - 1)^2}](https://tex.z-dn.net/?f=d_%7BBC%7D+%3D+%5Csqrt%7B%280+-+5%29%5E2+%2B+%283+-+%28-2%29%29%5E2+%2B+%28-3+-+1%29%5E2%7D+)
![d_{BC} = \sqrt{(-5)^2 + 5^2 + (-4)^2} d_{BC} = \sqrt{(-5)^2 + 5^2 + (-4)^2}](https://tex.z-dn.net/?f=d_%7BBC%7D+%3D+%5Csqrt%7B%28-5%29%5E2+%2B+5%5E2+%2B+%28-4%29%5E2%7D+)
![d_{BC} = \sqrt{25 + 25 + 16} d_{BC} = \sqrt{25 + 25 + 16}](https://tex.z-dn.net/?f=d_%7BBC%7D+%3D+%5Csqrt%7B25+%2B+25+%2B+16%7D+)
![d_{BC} = \sqrt{66} d_{BC} = \sqrt{66}](https://tex.z-dn.net/?f=d_%7BBC%7D+%3D+%5Csqrt%7B66%7D+)
Para AC, teremos:
A(3, 1, 2) C(0, 3, -3)
![d_{AC} = \sqrt{(x_{2} - x_{1})^2 + (y_{2} - y_{1})^2 + (z_{2} - z_{1})^2} d_{AC} = \sqrt{(x_{2} - x_{1})^2 + (y_{2} - y_{1})^2 + (z_{2} - z_{1})^2}](https://tex.z-dn.net/?f=d_%7BAC%7D+%3D+%5Csqrt%7B%28x_%7B2%7D+-+x_%7B1%7D%29%5E2+%2B+%28y_%7B2%7D+-+y_%7B1%7D%29%5E2+%2B+%28z_%7B2%7D+-+z_%7B1%7D%29%5E2%7D+)
![d_{AC} = \sqrt{(0 - 3)^2 + (3 - 1)^2 + (-3 - 2)^2} d_{AC} = \sqrt{(0 - 3)^2 + (3 - 1)^2 + (-3 - 2)^2}](https://tex.z-dn.net/?f=d_%7BAC%7D+%3D+%5Csqrt%7B%280+-+3%29%5E2+%2B+%283+-+1%29%5E2+%2B+%28-3+-+2%29%5E2%7D+)
![d_{AC} = \sqrt{(-3)^2 + 2^2 + (-5)^2} d_{AC} = \sqrt{(-3)^2 + 2^2 + (-5)^2}](https://tex.z-dn.net/?f=d_%7BAC%7D+%3D+%5Csqrt%7B%28-3%29%5E2+%2B+2%5E2+%2B+%28-5%29%5E2%7D+)
![d_{AC} = \sqrt{9 + 4 + 25} d_{AC} = \sqrt{9 + 4 + 25}](https://tex.z-dn.net/?f=d_%7BAC%7D+%3D+%5Csqrt%7B9+%2B+4+%2B+25%7D+)
![d_{AC} = \sqrt{38} d_{AC} = \sqrt{38}](https://tex.z-dn.net/?f=d_%7BAC%7D+%3D+%5Csqrt%7B38%7D+)
Como o perímetro é a soma de todos os lados. Basta somar as distâncias calculadas acima. Assim:
![p = d_{AB} + d_{BC} + d_{AC} p = d_{AB} + d_{BC} + d_{AC}](https://tex.z-dn.net/?f=p+%3D+d_%7BAB%7D+%2B+d_%7BBC%7D+%2B+d_%7BAC%7D)
![p = \sqrt{14} + \sqrt{66} + \sqrt{38} p = \sqrt{14} + \sqrt{66} + \sqrt{38}](https://tex.z-dn.net/?f=p+%3D+%5Csqrt%7B14%7D+%2B+%5Csqrt%7B66%7D+%2B+%5Csqrt%7B38%7D)
Fórmula da distância entre dois pontos, (
Para AB, teremos:
A(3, 1, 2) B(5, -2, 1)
Para BC, teremos:
B(5, -2, 1) C(0, 3, -3)
Para AC, teremos:
A(3, 1, 2) C(0, 3, -3)
Como o perímetro é a soma de todos os lados. Basta somar as distâncias calculadas acima. Assim:
Perguntas interessantes