Matemática, perguntado por izabeleb797, 8 meses atrás

calcule o perímetro desse losango, usando teorema de Pitágoras, me ajudemmm​

Anexos:

Soluções para a tarefa

Respondido por marciocbe
1

Resposta:

Olá bom dia!

Losango é um quadrilátero cuja medida dos lados são iguais.

Observe que 90cm é a medida  do segmento que unem os vértices de maior distância. E 56cm é a medida  do segmento que unem os vértices de menor distância.

Nas extensões pontilhadas e nas setas é possível observar triângulos retângulos.

Sendo um losango, a metade do segmento que mede 90 cm é um cateto (será então 45 cm). Da mesma forma, a metade do segmento de 56° (28 cm) é um outro cateto.

Então para determinar a medida do lado do losango, o lado (L) pode ser obtido por Pitágoras da seguinte forma:

L² = 45² + 28²

L² = 2025 + 784

L² = 2809

L=\sqrt{2809}

L = 53

Perímetro é a soma dos lados de um polígono. Então o perímetro (P) do Losango será:

P = L + L + L + L

P = 53 + 53 + 53 + 53

P = 4.(53)

P = 212

O perímetro do losango é 212 cm.


izabeleb797: obrigada!!
marciocbe: eu que agradeço
Respondido por Kin07
1

Resposta:

Solução:

O losango é um quadrilátero que possui os quatro lados congruentes.

Traçando duas diagonais formam  quatro triângulo equilátero.

De modo que os losangos apresentam lados iguais, basta que sejam multiplicados os lados por quatro.

Analisando a figura em anexo;

Para determinar o valor do lado, aplicando o teorema de Pitágoras, temos:

\sf \displaystyle \ell^2 = (45)^2 + (28)^2

\sf \displaystyle \ell^2 = 2025 +784

\sf \displaystyle \ell^2 = 2809

\sf \displaystyle \ell = \sqrt{2809}

\sf \displaystyle \ell =53\:cm

Perímetro é a soma das medidas de todos lados de uma figura.

O losango possuem todos lados congruentes, basta usar a fórmula é a seguinte:

\sf \displaystyle P = 4 \cdot \ell

\sf \displaystyle P = 4 \cdot 53\:cm

\boxed{ \boxed { \boldsymbol{ \sf  \displaystyle P = 212\: cm  }}} \quad \gets \mathbf{ Resposta }

Explicação passo-a-passo:

Anexos:
Perguntas interessantes