Matemática, perguntado por angelo7081, 6 meses atrás

calcule o número de arranjos simples de 6 elementos tomados 3 a 3 .​

Soluções para a tarefa

Respondido por auditsys
2

Resposta:

\textsf{Leia abaixo}

Explicação passo a passo:

\sf{A_{\:n,p} = \dfrac{n!}{(n - p)!}}

\sf{A_{\:6,3} = \dfrac{6!}{(6 - 3)!}}

\sf{A_{\:6,3} = \dfrac{6.5.4.\not3!}{\not3!}}

\boxed{\boxed{\sf{A_{\:6,3} = 120}}}

Respondido por Math739
1

\Large\boxed{\begin{array}{l}\sf n=6~~e~~k=3\\\sf A_{n,k}=\dfrac{n!}{(n-k)!}\\\\\sf A_{6,3}=\dfrac{6!}{(6-3)!}\\\\\sf A_{6,3}=\dfrac{6*5*4*\diagup\!\!\!\!3!}{\diagup\!\!\!\!3!}\\\\\sf A_{6,3}=6*5*4\\\\\huge\boxed{\boxed{\boxed{\boxed{\sf A_{6,3}=120}}}}\end{array}}

Perguntas interessantes