Matemática, perguntado por marianagabryofp4jzlm, 1 ano atrás

Calcule o mdc através do algoritmo de Euclides 30 e 40

12 e 8


20 e 10.


E 17 e 32

Preciso urgente!!

Soluções para a tarefa

Respondido por balamundo51
39

Definimos Máximo Divisor Comum - M.D.C entre dois ou mais números como sendo o maior divisor comum entre eles.


D(18) = { 1, 2, 3, 6, 9 e 18 } e D(30) = { 1, 2, 3, 5, 6, 10, 15 e 30 }


O Conjunto nos mostra os divisores comuns a 18 e 30 e dentre eles o maior, ou máximo,

será o 6 ; Com isso diremos que : M.D.C ( 18 e 30 ) = 6


Exemplo 2 : Consideremos, por exemplo, os números 24, 60 e 84. Determinemos, inicialmente, seus divisores :


D(24) = { 1, 2, 3, 4, 6, 8, 12 e 24 },

D(60) = { 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30 e 60 } e

D(84) = { 1, 2, 3, 4, 6, 7, 12, 14, 21, 28, 42 e 84 }


O Conjunto nos mostra os divisores comuns a 24, 60 e 84 e dentre eles o maior, ou

máximo, será o 12 ; Com isso diremos que : M.D.C ( 18, 60 e 84 ) = 12


2.0 - Métodos para o Cálculo do M.D.C.



2.1 - 1º Método: Algoritmo de Euclides, Método das Divisões Sucessivas ou " Jogo da Velha "



Exemplo 1 : Calculemos, por exemplo, o M.D.C entre 48 e 72 .


Exemplo 2 : Calculemos, por exemplo, o M.D.C entre 324 e 252 .


Montemos um diagrama semelhante ao Jogo da Velha e nele colocaremos na ordem decrescente os números dados.


2.2 - 2º Método: Decomposição em Fatores Primos


Nesse método iremos decompor os números em fatores primos e aplicarmos a regra :


O M.D.C. entre dois ou mais números é dado pelo produto entre os fatores primos comuns, elevados aos menores expoentes


Exemplo 1 : Calculemos, por exemplo, o M.D.C entre 96 e 360.


Decompondo cada um dos números em fatores primos, teremos :


96 = 25 X 3 e 360 = 23 X 32 X 5. E aplicando a regra, teremos :


fatores comuns => 2 e 3 e elevados aos menores expoentes : 23 e 31. Com isso : M.D.C. ( 96 e 360 ) = 23 X 3 = 8 X 3 = 24


Exemplo 2 : Calculemos, por exemplo, o M.D.C entre 100, 180 e 840.


Decompondo cada um dos números em fatores primos, teremos :


100 = 22 X 52 180 = 22 X 32 X 5 e 840 = 23 X 3 X 5 X 7


E aplicando a regra, teremos :


fatores comuns => 2 e 5 e elevados aos menores expoentes : 22 e 51. Com isso : M.D.C. (100, 180 e 840) = 22 X 5 = 4 X 5 = 20


Exemplo 3 : Calculemos, por exemplo, o M.D.C entre A, B e C, sendo :


A = 22 X 35 X 54

B = 26 X 33 X 53 X 113 e

C = 24 X 34 X 52 X 75


Nesse caso os números já estão decompostos em fatores primos e aplicando a regra, teremos :


Fatores comuns => 2, 3 e 5 e elevados aos menores expoentes : 22, 33 e 52.


Com isso e deixando o resultado indicado como originalmente no exemplo : M.D.C. (A, B e C) = 22 X 33 X 52


3.0 - Características Marcantes do M.D.C.



5.04a - O M.D.C. entre dois ou mais números primos será sempre igual a unidade.


5.04b - O M.D.C. entre dois números consecutivos será sempre igual a unidade.


5.04c - O M.D.C. entre dois ou mais números pares será sempre igual a 2.


5.04d - Se A é múltiplo de B, o M.D.C. entre A e B será igual a B.


5.04e - Se B é divisor de A, o M.D.C. entre A e B será igual a B.


5.04f - Se multiplicarmos dois ou mais números por um número natural maior que zero, o M.D.C. entre eles também ficará multiplicado

por esse número.


5.04g - Se dividirmos dois ou mais números por um número natural maior que zero, o M.D.C. entre eles também ficará dividido por

esse número.


5.04h - Quando o M.D.C. entre dois números, não necessariamente primos, é 1, eles são chamados primos entre si.


4.0 - Mínimo Múltiplo Comum - M.M.C.



Definimos Mínimo Múltiplo Comum - M.M.C entre dois ou mais números como sendo o menor múltiplo comum não nulo entre eles.


Exemplo 1 : Consideremos, por exemplo, os números 12 e 18. Determinemos, inicialmente, o conjunto de seus múltiplos :


M(12) = { 0, 12, 24, 36, 48, 60, 72, … } e M(18) = { 0, 18, 36, 54, 72, 90, … }


O Conjunto nos mostra os múltiplos comuns a 12 e 18 e dentre eles o menor e

não nulo, ou mínimo, será o 36 ; Com isso, diremos que : M.M.C ( 12 e 18 ) = 36


Exemplo 2 : Consideremos, por exemplo, os números 6, 9 e 15. Determinemos, inicialmente, seus múltiplos :


M( 6 ) = { 0, 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, … } ,

M( 9 ) = { 0, 9, 18, 27, 36, 45, 54, 63, 72, 81, 90, 99, 108, … } e

M( 15 ) = { 0, 15, 30, 45, 60, 75, 90, 105, 120, 135, 150, … }


O Conjunto nos mostra os múltiplos comuns a 6, 9 e 15 e dentre eles o

menor e não nulo, ou mínimo, será o 90 ;


Com isso diremos que : M.M.C ( 6, 9 e 15 ) = 90


5.0 - Métodos para o Cálculo do Mínimo Múltiplo Comum - M.M.C.



5.1 - 1º Método para o Cálculo do M.M.C. : Decomposição em Fatores Primos



Nesse método iremos decompor os números em fatores primos e aplicarmos a regra :


O M.M.C. entre dois ou mais números é dado pelo produto entre todos os fatores primos, comuns e não comuns, elevados aos maiores

expoentes


Exemplo 1 : Calculemos, por exemplo, o M.M.C entre 24 e 50.


Decompondo cada um dos números em fatores primos, teremos : 24 = 23 X 31 e 50 = 21 X 52. E aplicando a regra, teremos :


todos os fatores => 2, 3 e 5 e elevados aos maiores expoentes : 23, 31 e 52. Com isso :


M.M.C. ( 24 e 50 ) = 23 X 31X 52 = 8 X 3 X 25 = 600


Exemplo 2 : Calculemos, por exemplo, o M.M.C entre A, B e C, sendo :


A = 22 X 35 X 5

B = 23 X 33 X 53 X 73

C = 24 X 34 X 52 X 74

Perguntas interessantes