Calcule o limite:
![\lim_{x \to \(-3} \frac{ \sqrt{x^2+16}-5 }{x^2+3x} \lim_{x \to \(-3} \frac{ \sqrt{x^2+16}-5 }{x^2+3x}](https://tex.z-dn.net/?f=+%5Clim_%7Bx+%5Cto+%5C%28-3%7D++%5Cfrac%7B+%5Csqrt%7Bx%5E2%2B16%7D-5+%7D%7Bx%5E2%2B3x%7D++)
A resposta é
mas não consigo chegar nela
andresccp:
sabe derivar ou dividir polinomios?
Soluções para a tarefa
Respondido por
1
vc pode reescrever a raiz assim
![\sqrt{ x^{2} +16} = (x^{2} +16) ^{ \frac{1}{2} } \\\\ \sqrt{ x^{2} +16} = (x^{2} +16) ^{ \frac{1}{2} } \\\\](https://tex.z-dn.net/?f=+%5Csqrt%7B+x%5E%7B2%7D+%2B16%7D+%3D+%28x%5E%7B2%7D+%2B16%29+%5E%7B+%5Cfrac%7B1%7D%7B2%7D+%7D+%5C%5C%5C%5C)
depois deriva a de cima e a de baixo
![G(x) = (x^{2} +16) ^{ \frac{1}{2} } -5 \\\\G'(x) = \frac{1}{2} (x^{2} +16) ^{ \frac{1-1}{2} } .2x\\\\G'(x) = \frac{2x}{2} (x^{2} +16) ^{ \frac{-1}{2} } \\\\G'(x) = x (x^{2} +16) ^{ \frac{-1}{2} } \\\\ G'(x)=\frac{x}{ \sqrt{ x^{2}+16 } } G(x) = (x^{2} +16) ^{ \frac{1}{2} } -5 \\\\G'(x) = \frac{1}{2} (x^{2} +16) ^{ \frac{1-1}{2} } .2x\\\\G'(x) = \frac{2x}{2} (x^{2} +16) ^{ \frac{-1}{2} } \\\\G'(x) = x (x^{2} +16) ^{ \frac{-1}{2} } \\\\ G'(x)=\frac{x}{ \sqrt{ x^{2}+16 } }](https://tex.z-dn.net/?f=G%28x%29+%3D+%28x%5E%7B2%7D+%2B16%29+%5E%7B+%5Cfrac%7B1%7D%7B2%7D+%7D+-5+%5C%5C%5C%5CG%27%28x%29+%3D+%5Cfrac%7B1%7D%7B2%7D+%28x%5E%7B2%7D+%2B16%29+%5E%7B+%5Cfrac%7B1-1%7D%7B2%7D+%7D+.2x%5C%5C%5C%5CG%27%28x%29+%3D+%5Cfrac%7B2x%7D%7B2%7D+%28x%5E%7B2%7D+%2B16%29+%5E%7B+%5Cfrac%7B-1%7D%7B2%7D+%7D+%5C%5C%5C%5CG%27%28x%29+%3D+x+%28x%5E%7B2%7D+%2B16%29+%5E%7B+%5Cfrac%7B-1%7D%7B2%7D+%7D+%5C%5C%5C%5C++G%27%28x%29%3D%5Cfrac%7Bx%7D%7B+%5Csqrt%7B+x%5E%7B2%7D%2B16+%7D+%7D+)
derivando a de baixo
![H(x) = x^{2} +3x\\\\H'(x)=2x+3 H(x) = x^{2} +3x\\\\H'(x)=2x+3](https://tex.z-dn.net/?f=H%28x%29+%3D++x%5E%7B2%7D+%2B3x%5C%5C%5C%5CH%27%28x%29%3D2x%2B3)
agora temos
![\frac{ \frac{x}{ \sqrt{ x^{2} +16} } }{2x+3}\\\\ \frac{ \frac{-3}{ \sqrt{ -3^{2} +16} } }{(2(-3))+3}\\\\ \frac{ \frac{-3}{ \sqrt{ 25} } }{-3}\\\\ \frac{1}{ \sqrt{25} } = \frac{1}{5} \frac{ \frac{x}{ \sqrt{ x^{2} +16} } }{2x+3}\\\\ \frac{ \frac{-3}{ \sqrt{ -3^{2} +16} } }{(2(-3))+3}\\\\ \frac{ \frac{-3}{ \sqrt{ 25} } }{-3}\\\\ \frac{1}{ \sqrt{25} } = \frac{1}{5}](https://tex.z-dn.net/?f=+%5Cfrac%7B+%5Cfrac%7Bx%7D%7B+%5Csqrt%7B+x%5E%7B2%7D+%2B16%7D+%7D+%7D%7B2x%2B3%7D%5C%5C%5C%5C++%5Cfrac%7B+%5Cfrac%7B-3%7D%7B+%5Csqrt%7B+-3%5E%7B2%7D+%2B16%7D+%7D+%7D%7B%282%28-3%29%29%2B3%7D%5C%5C%5C%5C+%5Cfrac%7B+%5Cfrac%7B-3%7D%7B+%5Csqrt%7B+25%7D+%7D+%7D%7B-3%7D%5C%5C%5C%5C+%5Cfrac%7B1%7D%7B+%5Csqrt%7B25%7D+%7D+%3D+%5Cfrac%7B1%7D%7B5%7D+)
depois deriva a de cima e a de baixo
derivando a de baixo
agora temos
Respondido por
1
Outra,
![\lim_{x\rightarrow-3}\frac{\sqrt{x^2+16}-5}{x^2+3x}=\\\\\\\lim_{x\rightarrow-3}\frac{\sqrt{x^2+16}-5}{x^2+3x}\times\frac{\sqrt{x^2+16}+5}{\sqrt{x^2+16}+5}= \lim_{x\rightarrow-3}\frac{\sqrt{x^2+16}-5}{x^2+3x}=\\\\\\\lim_{x\rightarrow-3}\frac{\sqrt{x^2+16}-5}{x^2+3x}\times\frac{\sqrt{x^2+16}+5}{\sqrt{x^2+16}+5}=](https://tex.z-dn.net/?f=%5Clim_%7Bx%5Crightarrow-3%7D%5Cfrac%7B%5Csqrt%7Bx%5E2%2B16%7D-5%7D%7Bx%5E2%2B3x%7D%3D%5C%5C%5C%5C%5C%5C%5Clim_%7Bx%5Crightarrow-3%7D%5Cfrac%7B%5Csqrt%7Bx%5E2%2B16%7D-5%7D%7Bx%5E2%2B3x%7D%5Ctimes%5Cfrac%7B%5Csqrt%7Bx%5E2%2B16%7D%2B5%7D%7B%5Csqrt%7Bx%5E2%2B16%7D%2B5%7D%3D)
![\lim_{x\rightarrow-3}\frac{(x^2+16)-25}{x(x+3)(\sqrt{x^2+16}+5)}\right)=\\\\\\\lim_{x\rightarrow-3}\frac{(x^2-9)}{x(x+3)(\sqrt{x^2+16}+5)}=\\\\\\\lim_{x\rightarrow-3}\frac{(x+3)(x-3)}{x(x+3)(\sqrt{x^2+16}+5)}=\\\\\\\lim_{x\rightarrow-3}\frac{(x-3)}{x(\sqrt{x^2+16}+5)}= \lim_{x\rightarrow-3}\frac{(x^2+16)-25}{x(x+3)(\sqrt{x^2+16}+5)}\right)=\\\\\\\lim_{x\rightarrow-3}\frac{(x^2-9)}{x(x+3)(\sqrt{x^2+16}+5)}=\\\\\\\lim_{x\rightarrow-3}\frac{(x+3)(x-3)}{x(x+3)(\sqrt{x^2+16}+5)}=\\\\\\\lim_{x\rightarrow-3}\frac{(x-3)}{x(\sqrt{x^2+16}+5)}=](https://tex.z-dn.net/?f=%5Clim_%7Bx%5Crightarrow-3%7D%5Cfrac%7B%28x%5E2%2B16%29-25%7D%7Bx%28x%2B3%29%28%5Csqrt%7Bx%5E2%2B16%7D%2B5%29%7D%5Cright%29%3D%5C%5C%5C%5C%5C%5C%5Clim_%7Bx%5Crightarrow-3%7D%5Cfrac%7B%28x%5E2-9%29%7D%7Bx%28x%2B3%29%28%5Csqrt%7Bx%5E2%2B16%7D%2B5%29%7D%3D%5C%5C%5C%5C%5C%5C%5Clim_%7Bx%5Crightarrow-3%7D%5Cfrac%7B%28x%2B3%29%28x-3%29%7D%7Bx%28x%2B3%29%28%5Csqrt%7Bx%5E2%2B16%7D%2B5%29%7D%3D%5C%5C%5C%5C%5C%5C%5Clim_%7Bx%5Crightarrow-3%7D%5Cfrac%7B%28x-3%29%7D%7Bx%28%5Csqrt%7Bx%5E2%2B16%7D%2B5%29%7D%3D)
Perguntas interessantes