Calcule o centro de massa de uma lâmina triangular de vértices (0,0), (0,1) e (1,0), cuja função densidade
é:
Soluções para a tarefa
Respondido por
12
Primeiro calcular a massa total M:

lembrando que:

e

Como temos os pontos (0,1) e (1,0) pela equação da reta encontramos:

a massa é dada por:
![\displaystyle M=\int_{0}^{1}\limits\int\limits^{1-x}_{0}xy\,dA=\int_{0}^{1}\limits\int\limits^{1-x}_{0}xy\,dydx\\\\i)~~~\int_{0}^{1}\limits\int\limits^{1-x}_{0}xy\,dydx=\int\limits_{0}^{1}\left.\frac{1}{2}y^2\right]\limits_{0}^{1-x}dx\\\\ii)~\int\limits_{0}^{1}\left.\frac{1}{2}xy^2\right]\limits_{0}^{1-x}dx=\int\limits_{0}^{1}\frac{1}{2}x(1-x)^2-\frac{1}{2}\cdot0\,dx\\\\iii)\int\limits_{0}^{1}\frac{1}{2}(x-2x^2+x^3)\,dx=\left[\frac{1}{4}x^2-\frac{1}{3}x^3+\frac{1}{4}x^4\right]\limits_{0}^{1}=\right[\frac{3x^4+3x^2-4x^3}{48}\left]\limits_{0}^{1} \displaystyle M=\int_{0}^{1}\limits\int\limits^{1-x}_{0}xy\,dA=\int_{0}^{1}\limits\int\limits^{1-x}_{0}xy\,dydx\\\\i)~~~\int_{0}^{1}\limits\int\limits^{1-x}_{0}xy\,dydx=\int\limits_{0}^{1}\left.\frac{1}{2}y^2\right]\limits_{0}^{1-x}dx\\\\ii)~\int\limits_{0}^{1}\left.\frac{1}{2}xy^2\right]\limits_{0}^{1-x}dx=\int\limits_{0}^{1}\frac{1}{2}x(1-x)^2-\frac{1}{2}\cdot0\,dx\\\\iii)\int\limits_{0}^{1}\frac{1}{2}(x-2x^2+x^3)\,dx=\left[\frac{1}{4}x^2-\frac{1}{3}x^3+\frac{1}{4}x^4\right]\limits_{0}^{1}=\right[\frac{3x^4+3x^2-4x^3}{48}\left]\limits_{0}^{1}](https://tex.z-dn.net/?f=%5Cdisplaystyle+M%3D%5Cint_%7B0%7D%5E%7B1%7D%5Climits%5Cint%5Climits%5E%7B1-x%7D_%7B0%7Dxy%5C%2CdA%3D%5Cint_%7B0%7D%5E%7B1%7D%5Climits%5Cint%5Climits%5E%7B1-x%7D_%7B0%7Dxy%5C%2Cdydx%5C%5C%5C%5Ci%29%7E%7E%7E%5Cint_%7B0%7D%5E%7B1%7D%5Climits%5Cint%5Climits%5E%7B1-x%7D_%7B0%7Dxy%5C%2Cdydx%3D%5Cint%5Climits_%7B0%7D%5E%7B1%7D%5Cleft.%5Cfrac%7B1%7D%7B2%7Dy%5E2%5Cright%5D%5Climits_%7B0%7D%5E%7B1-x%7Ddx%5C%5C%5C%5Cii%29%7E%5Cint%5Climits_%7B0%7D%5E%7B1%7D%5Cleft.%5Cfrac%7B1%7D%7B2%7Dxy%5E2%5Cright%5D%5Climits_%7B0%7D%5E%7B1-x%7Ddx%3D%5Cint%5Climits_%7B0%7D%5E%7B1%7D%5Cfrac%7B1%7D%7B2%7Dx%281-x%29%5E2-%5Cfrac%7B1%7D%7B2%7D%5Ccdot0%5C%2Cdx%5C%5C%5C%5Ciii%29%5Cint%5Climits_%7B0%7D%5E%7B1%7D%5Cfrac%7B1%7D%7B2%7D%28x-2x%5E2%2Bx%5E3%29%5C%2Cdx%3D%5Cleft%5B%5Cfrac%7B1%7D%7B4%7Dx%5E2-%5Cfrac%7B1%7D%7B3%7Dx%5E3%2B%5Cfrac%7B1%7D%7B4%7Dx%5E4%5Cright%5D%5Climits_%7B0%7D%5E%7B1%7D%3D%5Cright%5B%5Cfrac%7B3x%5E4%2B3x%5E2-4x%5E3%7D%7B48%7D%5Cleft%5D%5Climits_%7B0%7D%5E%7B1%7D)
![\displaystyle \\\\\ iv)~\int\limits_{0}^{1}\int\limits_{0}^{1-x}xy\,dydx =\left[\frac{3x^4+3x^2-4x^3}{48}\right]\limits_{0}^{1}=\frac{3+3-4}{48}-\frac{0}{48}\\\\v)~~\int\limits_{0}^{1}\int\limits_{0}^{1-x}xy\,dydx =\frac{2}{48}=\boxed{\frac{1}{24}~~Unidades~de~medida} \displaystyle \\\\\ iv)~\int\limits_{0}^{1}\int\limits_{0}^{1-x}xy\,dydx =\left[\frac{3x^4+3x^2-4x^3}{48}\right]\limits_{0}^{1}=\frac{3+3-4}{48}-\frac{0}{48}\\\\v)~~\int\limits_{0}^{1}\int\limits_{0}^{1-x}xy\,dydx =\frac{2}{48}=\boxed{\frac{1}{24}~~Unidades~de~medida}](https://tex.z-dn.net/?f=%5Cdisplaystyle+%5C%5C%5C%5C%5C+iv%29%7E%5Cint%5Climits_%7B0%7D%5E%7B1%7D%5Cint%5Climits_%7B0%7D%5E%7B1-x%7Dxy%5C%2Cdydx+%3D%5Cleft%5B%5Cfrac%7B3x%5E4%2B3x%5E2-4x%5E3%7D%7B48%7D%5Cright%5D%5Climits_%7B0%7D%5E%7B1%7D%3D%5Cfrac%7B3%2B3-4%7D%7B48%7D-%5Cfrac%7B0%7D%7B48%7D%5C%5C%5C%5Cv%29%7E%7E%5Cint%5Climits_%7B0%7D%5E%7B1%7D%5Cint%5Climits_%7B0%7D%5E%7B1-x%7Dxy%5C%2Cdydx+%3D%5Cfrac%7B2%7D%7B48%7D%3D%5Cboxed%7B%5Cfrac%7B1%7D%7B24%7D%7E%7EUnidades%7Ede%7Emedida%7D)
agora para encontrar o centro de massa
usamos a relação:

onde
é o primeiro momento do objeto em torno do eixo y e x, respectivamente, e são dados por:

então:

calculando primeiro momento da lâmina:
![\displaystyle \int\limits_{0}^{1}\int\limits_{0}^{1-x}x(xy)dydx=\int\limits_{0}^{1}\int\limits_{0}^{1-x}x^2y\,dydx\\\\i)~~\int\limits_{0}^{1}\int\limits_{0}^{1-x}x^2y\,dydx=\int\limits_{0}^{1}\left.\frac{1}{2}x^2y^2\right]\limits_{0}^{1-x}dx\\\\ii)~~\int\limits_{0}^{1}\frac{1}{2}x^2\left(1-2x+x^2\right)-0\,dx=\int\limits_{0}^{1}\frac{1}{2}x^2-x^3+\frac{1}{2}x^4\,dx\\\\iii)~~\frac{1}{2}\int\limits_{0}^{1}x^2-2x^3+x^4\,dx=\frac{1}{2}\left[\frac{1}{3}x^3-\frac{2}{4}x^4+\frac{1}{5}x^5\right]\limits_{0}^{1} \displaystyle \int\limits_{0}^{1}\int\limits_{0}^{1-x}x(xy)dydx=\int\limits_{0}^{1}\int\limits_{0}^{1-x}x^2y\,dydx\\\\i)~~\int\limits_{0}^{1}\int\limits_{0}^{1-x}x^2y\,dydx=\int\limits_{0}^{1}\left.\frac{1}{2}x^2y^2\right]\limits_{0}^{1-x}dx\\\\ii)~~\int\limits_{0}^{1}\frac{1}{2}x^2\left(1-2x+x^2\right)-0\,dx=\int\limits_{0}^{1}\frac{1}{2}x^2-x^3+\frac{1}{2}x^4\,dx\\\\iii)~~\frac{1}{2}\int\limits_{0}^{1}x^2-2x^3+x^4\,dx=\frac{1}{2}\left[\frac{1}{3}x^3-\frac{2}{4}x^4+\frac{1}{5}x^5\right]\limits_{0}^{1}](https://tex.z-dn.net/?f=%5Cdisplaystyle+%5Cint%5Climits_%7B0%7D%5E%7B1%7D%5Cint%5Climits_%7B0%7D%5E%7B1-x%7Dx%28xy%29dydx%3D%5Cint%5Climits_%7B0%7D%5E%7B1%7D%5Cint%5Climits_%7B0%7D%5E%7B1-x%7Dx%5E2y%5C%2Cdydx%5C%5C%5C%5Ci%29%7E%7E%5Cint%5Climits_%7B0%7D%5E%7B1%7D%5Cint%5Climits_%7B0%7D%5E%7B1-x%7Dx%5E2y%5C%2Cdydx%3D%5Cint%5Climits_%7B0%7D%5E%7B1%7D%5Cleft.%5Cfrac%7B1%7D%7B2%7Dx%5E2y%5E2%5Cright%5D%5Climits_%7B0%7D%5E%7B1-x%7Ddx%5C%5C%5C%5Cii%29%7E%7E%5Cint%5Climits_%7B0%7D%5E%7B1%7D%5Cfrac%7B1%7D%7B2%7Dx%5E2%5Cleft%281-2x%2Bx%5E2%5Cright%29-0%5C%2Cdx%3D%5Cint%5Climits_%7B0%7D%5E%7B1%7D%5Cfrac%7B1%7D%7B2%7Dx%5E2-x%5E3%2B%5Cfrac%7B1%7D%7B2%7Dx%5E4%5C%2Cdx%5C%5C%5C%5Ciii%29%7E%7E%5Cfrac%7B1%7D%7B2%7D%5Cint%5Climits_%7B0%7D%5E%7B1%7Dx%5E2-2x%5E3%2Bx%5E4%5C%2Cdx%3D%5Cfrac%7B1%7D%7B2%7D%5Cleft%5B%5Cfrac%7B1%7D%7B3%7Dx%5E3-%5Cfrac%7B2%7D%7B4%7Dx%5E4%2B%5Cfrac%7B1%7D%7B5%7Dx%5E5%5Cright%5D%5Climits_%7B0%7D%5E%7B1%7D)

e
![\displaystyle M_y=\int\limits_{0}^{1}\int\limits_{0}^{1-x}y(xy)dydx=\int\limits_{0}^{1}\int\limits_{0}^{1-x}xy^2\,dydx\\\\i)~~~\int\limits_{0}^{1}\int\limits_{0}^{1-x}xy^2\,dydx=\int_{0}^{1}\left[\frac{1}{3}xy^3\right]\limits_{0}^{1-x}dx\\\\ii)~~\int_{0}^{1}\left(\frac{1}{3}x(x-1)^3-0\right)dx\\\\iii)~~u=x-1\implies du=dx \displaystyle M_y=\int\limits_{0}^{1}\int\limits_{0}^{1-x}y(xy)dydx=\int\limits_{0}^{1}\int\limits_{0}^{1-x}xy^2\,dydx\\\\i)~~~\int\limits_{0}^{1}\int\limits_{0}^{1-x}xy^2\,dydx=\int_{0}^{1}\left[\frac{1}{3}xy^3\right]\limits_{0}^{1-x}dx\\\\ii)~~\int_{0}^{1}\left(\frac{1}{3}x(x-1)^3-0\right)dx\\\\iii)~~u=x-1\implies du=dx](https://tex.z-dn.net/?f=%5Cdisplaystyle+M_y%3D%5Cint%5Climits_%7B0%7D%5E%7B1%7D%5Cint%5Climits_%7B0%7D%5E%7B1-x%7Dy%28xy%29dydx%3D%5Cint%5Climits_%7B0%7D%5E%7B1%7D%5Cint%5Climits_%7B0%7D%5E%7B1-x%7Dxy%5E2%5C%2Cdydx%5C%5C%5C%5Ci%29%7E%7E%7E%5Cint%5Climits_%7B0%7D%5E%7B1%7D%5Cint%5Climits_%7B0%7D%5E%7B1-x%7Dxy%5E2%5C%2Cdydx%3D%5Cint_%7B0%7D%5E%7B1%7D%5Cleft%5B%5Cfrac%7B1%7D%7B3%7Dxy%5E3%5Cright%5D%5Climits_%7B0%7D%5E%7B1-x%7Ddx%5C%5C%5C%5Cii%29%7E%7E%5Cint_%7B0%7D%5E%7B1%7D%5Cleft%28%5Cfrac%7B1%7D%7B3%7Dx%28x-1%29%5E3-0%5Cright%29dx%5C%5C%5C%5Ciii%29%7E%7Eu%3Dx-1%5Cimplies+du%3Ddx)

obtemos:

então:

O centro de massa dessa lâmina é:

Imagem abaixo:
lembrando que:
e
Como temos os pontos (0,1) e (1,0) pela equação da reta encontramos:
a massa é dada por:
agora para encontrar o centro de massa
usamos a relação:
onde
então:
calculando primeiro momento da lâmina:
e
obtemos:
então:
O centro de massa dessa lâmina é:
Imagem abaixo:
Anexos:

Perguntas interessantes
Geografia,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Química,
1 ano atrás
Geografia,
1 ano atrás
Matemática,
1 ano atrás
Química,
1 ano atrás